

# Integrated Pollution Prevention and Control (IPPC)

# General Guidance for the Food and Drink Sector







Commissioning Organisation Environment Agency Rio House Waterside Drive Aztec West Almondsbury Bristol BS32 4UD

Tel 01454 624400 Fax 01454 624409

© Environment Agency

First Published ISBN

#### This document is Environment Agency copyright © We specifically allow the following:

- Internal business or personal use. You may use this document for your own private use or for use within your business without restriction.
- Giving copies to others. You may do this without restriction provided that you make no charge.

If you wish to use this document in any way other than as set out above including in particular for commercial gain, for example by way of rental, licence, sale or providing services you should contact:

Liz Greenland Environment Agency Scientific and Technical Information Service 2440 The Quadrant Aztec West Almondsbury Bristol BS32 4AQ

#### **Record of changes**

| Version                   | Date      | Change                       |
|---------------------------|-----------|------------------------------|
| Peer Review               | May 2001  |                              |
| Draft for<br>Consultation | July 2001 | Minor amendments from review |
|                           |           |                              |
|                           |           |                              |
|                           |           |                              |
|                           |           |                              |
|                           |           |                              |

#### Note:

Queries about the content of the document should be made to Mark Maleham (0117 914 2813) or any member of the IPPC Project or Technical Guidance Teams.

Written comments or suggested improvements should be sent to Graham Winter, at the Environment Agency's Technical Guidance Section by email at graham.winter@environment-agency.gov.uk or at:

Environmental Protection National Service Environment Agency Block 1 Government Building Burghill Road Westbury-on-Trym Bristol. BS10 6BF

Telephone 0117 914 2868

# **Executive Summary**

This guidance has been produced by the Environment Agency for England and Wales in collaboration with the Scottish Environment Protection Agency (SEPA) and the Northern Ireland Environment and Heritage Service (EHS). Together these are referred to as "the Regulator" in this document. Its publication follows consultation with industry, government departments and non-governmental organisations.

*What is IPPC* Integrated Pollution Prevention and Control (IPPC) is a regulatory system that employs an integrated approach to control the environmental impacts of certain industrial activities. It involves determining the appropriate controls for industry to protect the environment through a single permitting process. To gain a permit, operators will have to show that they have systematically developed proposals to apply the 'Best Available Techniques' (BAT) and meet certain other requirements, taking account of relevant local factors.

The Agencies intend to implement IPPC to:

- protect the environment as a whole;
- promote the use of "clean technology" to minimise waste at source ;
- encourage innovation, by leaving significant responsibility for developing satisfactory solutions to environmental issues with industrial operators; and
- provide a "one-stop shop" for administering applications for permits to operate.

Once a permit has been issued, other parts of IPPC come into play. These include compliance monitoring, periodic permit reviews, variation of permit conditions and transfers of permits between operators. IPPC also provides for the restoration of industrial sites when the permitted activities cease to operate.

This Guidance and the BREF The food and drink industry is due to be brought into IPPC (PPC Regulations 2000 No. 1973 Schedule 3) from June 2004 onwards. This document is interim UK Guidance for delivering the PPC Regulations in the sector, for the period leading up to the production of the BAT Reference document BREF produced by the European Commission. The BREF will be a result of an exchange of information between member states and industry. The quality, comprehensiveness and usefulness of the BREF system is acknowledged and subsequent versions of this guidance will complement the BREF and be crossreferenced to it throughout and will take into account the information contained in the BREF. In the meantime it lays down the standards and expectations in the UK (England and Wales, Scotland and Northern Ireland) for the techniques and standards that need to be addressed to satisfy the Regulations.

The aims of this Guidance are to:

- provide a clear structure and methodology which operators making an application should follow to
  ensure that all aspects of the PPC Regulations (see Appendix 2 for equivalent legislation in
  Scotland and Northern Ireland) and other relevant Regulations have been addressed (see Section
  1.2) and it should thereby assist the operator to make a satisfactory application;
- minimise the effort by both operator and regulator in the permitting of an installation by use of clear indicative standards and the use of material from previous applications, and from accredited Environmental Management Systems (EMSs);
- improve the consistency of applications by ensuring that all relevant issues are addressed;
- increase the transparency of the permitting process by having a structure in which the operators
  response to each issue, and any departures from the standards, can be seen clearly;
- improve consistency of regulation across installations and sectors by facilitating the comparison of applications;
- provide a description of the activities to assist the reader to understand the context of the requirements;
- provide a summary of the BAT techniques for pollution control and UK experience which are relevant in the UK context expressed, where possible, as clear indicative standards and which need to be addressed by applicants;
- provide an arrangement of information which allows the reader to find, quickly all of the guidance associated with:
  - a subject (e.g. accidents, energy or noise) (Sections 2.1 and 2.5 2.11);
  - the technical areas (e.g. cleaning or effluent management) (Sections 2.3 2.4);
  - particular emissions (e.g. COD) (Section 3).

Additionally, to assist operators in making applications, separate technical guidance is available on a range of topics such as waste minimisation, monitoring, calculating stack heights etc. The majority of this guidance is available free through the Environment Agency, SEPA or EPA (Ireland) web sites (see References).

By June 2004, the Agency anticipates having more specific guidance for particular sectors of the industry based on the BREF. In the meantime, the operators of new and substantially varied activities, who must seek permits before that date, are invited to use this guidance to help them make a satisfactory application.

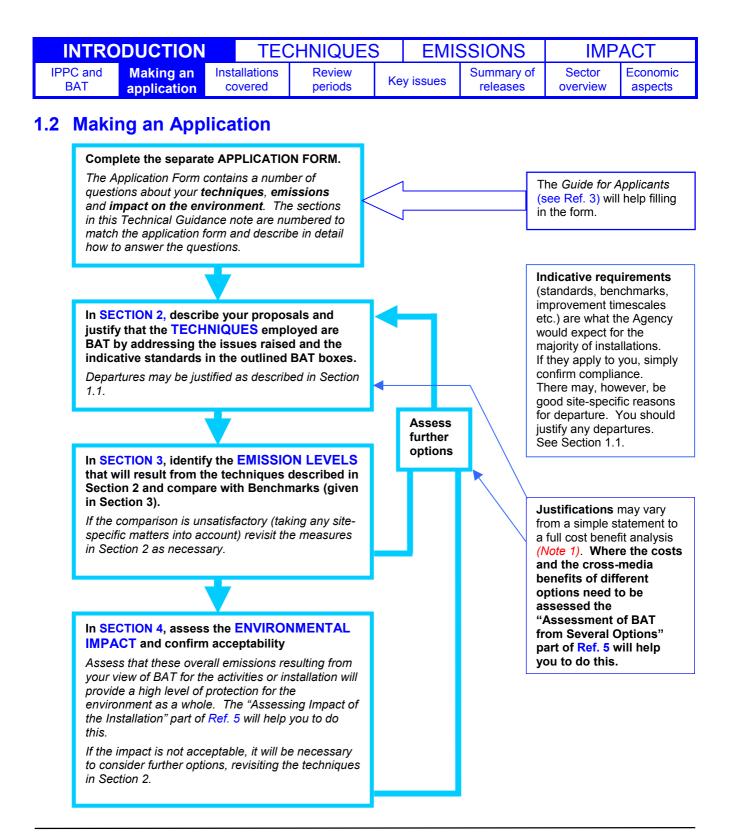
The aims of this Guidance

# **CONTENTS**

1

| 1 | INTR | ODUCT   | ION                  |                                                                         | 1              |
|---|------|---------|----------------------|-------------------------------------------------------------------------|----------------|
|   | 1.1  |         | STANDING             | IPPC AND BAT                                                            |                |
|   | 1.2  |         |                      | CATION                                                                  |                |
|   | 1.3  | INSTALI | ATIONS C             | OVERED                                                                  | 4              |
|   | 1.4  | REVIEW  | / PERIODS            |                                                                         | 5              |
|   | 1.5  | KEY ISS | SUES FOR 1           | THIS SECTOR                                                             | 6              |
|   | 1.6  |         |                      | EASES                                                                   |                |
|   | 1.7  |         |                      | ACTIVITIES IN THIS SECTOR                                               |                |
|   | 1.8  | Econo   | MIC ASPEC            | CTS                                                                     | 9              |
| 2 | TECH | INIQUE  | S FOR PO             | DLLUTION CONTROL                                                        | 10             |
|   | 2.1  | Manag   | EMENT TE             | CHNIQUES                                                                |                |
|   | 2.2  |         |                      | S                                                                       |                |
|   |      | 2.2.1   | Raw mat              | terials selection                                                       | 14             |
|   |      | 2.2.2   | Waste m              | inimisation (minimising the use of raw materials)                       |                |
|   |      |         | 2.2.2.1              | Process control                                                         |                |
|   |      |         | 2.2.2.2              | Recycling of auxiliary chemicals                                        |                |
|   |      | 2.2.3   | 2.2.2.3              | Packaging                                                               |                |
|   | 2.3  |         |                      | Se<br>TES AND ABATEMENT                                                 |                |
|   | 2.5  | 2.3.1   |                      | s handling, unpacking, storage                                          |                |
|   |      | 2.3.7   |                      | terial preparation                                                      |                |
|   |      | 2.0.2   | 2.3.2.1              | Feedstock cleaning (washing and soaking)                                | 27<br>27       |
|   |      |         | 2.3.2.2              | Dry cleaning                                                            |                |
|   |      |         | 2.3.2.3              | Sorting, screening, grading and trimming                                |                |
|   |      |         | 2.3.2.4              | Peeling                                                                 |                |
|   |      | 2.3.3   |                      |                                                                         |                |
|   |      |         | 2.3.3.1<br>2.3.3.2   | Grinding and milling<br>Cutting, slicing, chopping, mincing and pulping |                |
|   |      |         | 2.3.3.2              | Mixing, blending, and homogenisation                                    |                |
|   |      | 2.3.4   |                      | moulding and extruding                                                  |                |
|   |      | 2.3.5   |                      | cessing using steam or water                                            |                |
|   |      |         | 2.3.5.1              | Blanching                                                               |                |
|   |      |         | 2.3.5.2              | Evaporation                                                             |                |
|   |      |         | 2.3.5.3              | Pasteurisation, sterilisation, UHT                                      |                |
|   |      | 2.3.6   | •                    | cessing using hot air                                                   |                |
|   |      |         | 2.3.6.1<br>2.3.6.2   | Baking<br>Roasting                                                      |                |
|   |      |         | 2.3.6.3              | Drying (liquid/solid) and Dehydration (solid/solid)                     |                |
|   |      | 2.3.7   |                      | cessing using hot oils                                                  |                |
|   |      |         | 2.3.7.1              | Frying                                                                  |                |
|   |      | 2.3.8   | Processi             | ng by the removal of heat                                               |                |
|   |      |         | 2.3.8.1              | Cooling, chilling                                                       |                |
|   |      |         | 2.3.8.2              | Freezing                                                                |                |
|   |      | 220     | 2.3.8.3              | Freeze drying<br>on and concentration of food components                |                |
|   |      | 2.3.9   | 2.3.9.1              | Extraction                                                              |                |
|   |      |         | 2.3.9.1              | Centrifugation                                                          |                |
|   |      |         | 2.3.9.3              | Filtration                                                              |                |
|   |      |         | 2.3.9.4              | Membrane separation                                                     | 53             |
|   |      |         |                      | and sanitation                                                          |                |
|   |      | 2.3.11  |                      | ent of <u>point source</u> emissions to air                             |                |
|   |      |         |                      | General techniques                                                      |                |
|   |      |         |                      | Techniques for the Food and Drink sector                                |                |
|   |      |         | 2.3.11.3             | Processes using heat<br>Combustion processes                            |                |
|   |      | 2.3.12  | -                    | ent of <u>point source</u> emissions to surface water and               |                |
|   |      |         | 2.3.12.1             | Nature of the effluent                                                  |                |
|   |      |         | 2.3.12.2             | General Water Treatment Techniques                                      | 63             |
|   |      |         | 2.3.12.3             | Water Treatment for the Food and Drink sector                           | 63             |
|   |      |         |                      | Preliminary Techniques                                                  |                |
|   |      |         | 2.3.12.5<br>2.3.12.6 | Primary Treatment<br>Secondary Treatment                                |                |
|   |      |         |                      | -                                                                       |                |
|   |      |         | Dr                   | aft Version 3, July 2001                                                | Food and Drink |

|    |              | 2.3.12.7 Tertiary treatment<br>2.3.12.8 Sludge Treatment and Disposal                                  | . 72 |
|----|--------------|--------------------------------------------------------------------------------------------------------|------|
|    |              | 2.3.13 Control of fugitive emissions to air                                                            | . 75 |
|    |              | 2.3.14 Control of fugitive emissions to surface water, sewer and groundwater                           |      |
|    | 2.4          | 2.3.15 Odour<br>EMISSIONS TO GROUNDWATER                                                               |      |
|    | 2.5          | WASTE HANDLING                                                                                         |      |
|    | 2.6          | WASTE RECOVERY OR DISPOSAL                                                                             |      |
|    | 2.7          | ENERGY                                                                                                 |      |
|    |              | <ul><li>2.7.1 Basic energy requirements (1)</li><li>2.7.2 Basic energy requirements (2)</li></ul>      |      |
|    |              | 2.7.3 Sector specific energy requirements                                                              |      |
|    | 2.8          | Accidents and their Consequences                                                                       |      |
|    | 2.9          | NOISE AND VIBRATION                                                                                    |      |
|    | 2.10         |                                                                                                        |      |
|    | 2.11<br>2.12 | DE-COMMISSIONING<br>INSTALLATION-WIDE ISSUES                                                           |      |
| -  |              |                                                                                                        |      |
| 3  | EMIS         | SION BENCHMARKS                                                                                        |      |
|    | 3.1          | EMISSIONS INVENTORY AND BENCHMARK COMPARISON                                                           |      |
|    | 3.2          | THE EMISSION BENCHMARKS                                                                                |      |
|    |              | <ul><li>3.2.1 Standards and obligations</li><li>3.2.2 EC based EQ Standards</li></ul>                  |      |
|    |              | 3.2.3 Units for benchmarks and setting limits in permits                                               |      |
|    |              | 3.2.4 Statistical basis for benchmarks and limits in permits                                           | 109  |
|    |              | 3.2.5 Reference conditions for releases to air                                                         |      |
|    | 3.3          | BOD                                                                                                    |      |
|    | 3.4<br>3.5   | COD<br>HALOGENS                                                                                        |      |
|    | 3.6          | HALOGENS                                                                                               |      |
|    | 3.7          | NITROGEN OXIDES                                                                                        |      |
|    | 3.8          | NUTRIENTS (PHOSPHATES AND NITRATES)                                                                    |      |
|    | 3.9          | PARTICULATE AND SUSPENDED SOLIDS                                                                       |      |
|    | 3.10<br>3.11 | SULPHUR DIOXIDE                                                                                        |      |
| 4  |              | vосо                                                                                                   |      |
| -  |              |                                                                                                        | -    |
|    | 4.1<br>4.2   | ASSESSMENT OF THE IMPACT OF EMISSIONS ON THE ENVIRONMENT<br>THE WASTE MANAGEMENT LICENSING REGULATIONS |      |
|    | 4.2<br>4.3   | THE WASTE MANAGEMENT LICENSING REGULATIONS                                                             |      |
| RE | FEREN        | ICES                                                                                                   |      |
|    |              |                                                                                                        |      |
| DE | FINITIO      | DNS                                                                                                    | 121  |
| AP | PENDI        | X 1 - SOME COMMON MONITORING AND SAMPLING METHODS                                                      | 122  |
| AP | PENDI        | X 2 - EQUIVALENT LEGISLATION IN SCOTLAND & NORTHERN IRELAND                                            | 125  |


# **TABLE OF FIGURES**

| 19 |
|----|
| 24 |
| 45 |
| 58 |
| 59 |
|    |
| 65 |
| 66 |
| 67 |
| 68 |
| 72 |
|    |

| IPPC and<br>BATMaking an<br>applicationInstallations<br>coveredReview<br>periodsKey issuesSummary of<br>releasesSector<br>overviewINStallations<br>RegulationINTRODUCTIONINTRODUCTIONIntegrated Pollution Prevention and Control (IPPC) is a regulatory system that employs an<br>approach to control the environmental impacts of certain industrial activities. It involves de<br>the appropriate controls for industry to protect the environment through a single permitting<br>gain a Permit, operators will have to show that they have systematically developed propos<br>the 'Best Available Techniques' (BAT) and meet certain other requirements, taking accoun<br>local factors.IPPC operates under the Pollution Prevention and Control (England and Wales) Regulation<br>2 and Appendix 2). These Regulations have been made under the Pollution Prevention ar<br>(PPC) Act 1999 (Ref. 1) and implement the EC Directive 96/61 on IPPC. Further informati<br>overal system of IPPC; together with Government policy and more detailed advice on the<br>of the Regulations, can be found in the Department of the Environment, Transport and the<br>(DETR) document <i>IPPC: A Practical Guide</i> , (see Ref. 3).Installation<br>based, NOT<br>national<br>emission limitsThe "BAT" approach of IPPC is different from regulatory approaches based on fixed nation<br>limits and vhere this is the case the operator must justify, using BAT criteria, why the<br>being proposed in the application could be considered to be BAT. Justification for these te<br>and and where this is the case the operator must justify, using BAT criteria, why the<br>being proposed in the application could be considered to be BAT. Justification for these<br>te and any departures from stated standards, in                                                                                                                                                                                                                                                                                                                     | ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| <ul> <li>Integrated Pollution Prevention and Control (IPPC) is a regulatory system that employs an approach to control the environmental impacts of certain industrial activities. It involves de the appropriate controls for industry to protect the environment through a single permitting gain a Permit, operators will have to show that they have systematically developed propos the 'Best Available Techniques' (BAT) and meet certain other requirements, taking account local factors.</li> <li>The essence of BAT is that the selection of techniques to protect the environment should a appropriate balance between realising environmental benefits and costs incurred by Opera 1PPC operates under the Pollution Prevention and Control (England and Wales) Regulation 2 and Appendix 2). These Regulations have been made under the Pollution Prevention ar (PPC) Act 1999 (Ref. 1) and implement the EC Directive 96/61 on IPPC. Further informati overall system of IPPC, together with Government policy and more detailed advice on the of the Regulations, can be found in the Department of the Environment, Transport and the (DETR) document <i>IPPC: A Practical Guide</i>, (see Ref. 3).</li> <li>The "BAT" approach of IPPC is different from regulatory approaches based on fixed nation limits (except where General Binding Rules (GBRs) have been issued by the Secretary of legal instrument which ultimately defines BAT is the permit and this can only be issued at the installation level. The role of national guidance (such as this) for each sector is to express standards. Where these <u>are</u> laid out, they should be applied unless there is strong justificat another course of action. This version of the document may not contain the entire range o standards and where this is the case the operator must justify, using BAT criteria, why the being proposed in the application could be considered to be BAT. Justification for these te and any departures from stated standards, in either direction, can be made taking into accent and the perivose of the docu</li></ul> | Economic aspects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |
| <ul> <li>approach to control the environmental impacts of certain industrial activities. It involves de the appropriate controls for industry to protect the environment through a single permitting gain a Permit, operators will have to show that they have systematically developed propos the 'Best Available Techniques' (BAT) and meet certain other requirements, taking accoun local factors.</li> <li>The essence of BAT is that the selection of techniques to protect the environment should a appropriate balance between realising environmental benefits and costs incurred by Operate Dependence 2. These Regulations have been made under the Pollution Prevention ar (PPC) Act 1999 (Ref. 1) and implement the EC Directive 96/61 on IPPC. Further informati overall system of IPPC; together with Government policy and more detailed advice on the of the Regulations, can be found in the Department of the Environment, Transport and the (DETR) document <i>IPPC</i>: A Practical Guide, (see Ref. 3).</li> <li>The "BAT" approach of IPPC is different from regulatory approaches based on fixed nation limits (except where General Binding Rules (GBRs) have been issued by the Secretary of legal instrument which ultimately defines BAT is the permit and this can only be issued at t installation level. The role of national guidance (such as this) for each sector is to express standards. Where these <u>are</u> laid out, they should be applied unless there is strong justification of the course of action. This version of the document may not contain the entire range o standards and where this is the case the operator must justify, using BAT criteria, why the being proposed in the application could be considered to be BAT. Justification for these te and any departures from stated standards, in either direction, can be made taking into acceleration.</li> </ul>                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |
| <ul> <li>appropriate balance between realising environmental benefits and costs incurred by Operal IPPC operates under the Pollution Prevention and Control (England and Wales) Regulation 2 and Appendix 2). These Regulations have been made under the Pollution Prevention ar (PPC) Act 1999 (Ref. 1) and implement the EC Directive 96/61 on IPPC. Further informati overall system of IPPC, together with Government policy and more detailed advice on the of the Regulations, can be found in the Department of the Environment, Transport and the (DETR) document <i>IPPC: A Practical Guide</i>, (see Ref. 3).</li> <li>The "BAT" approach of IPPC is different from regulatory approaches based on fixed national emission limits</li> <li>The "BAT" approach of IPPC is different from regulatory approaches based on fixed nation limits (except where General Binding Rules (GBRs) have been issued by the Secretary of legal instrument which ultimately defines BAT is the permit and this can only be issued at t installation level. The role of national guidance (such as this) for each sector is to express standards. Where these are laid out, they should be applied unless there is strong justification other course of action. This version of the document may not contain the entire range o standards and where this is the case the operator must justify, using BAT criteria, why the being proposed in the application could be considered to be BAT. Justification for these te and any departures from stated standards, in either direction, can be made taking into acceleration.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | etermining<br>process.<br>sals to apply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |
| <ul> <li>2 and Appendix 2). These Regulations have been made under the Pollution Prevention ar (PPC) Act 1999 (Ref. 1) and implement the EC Directive 96/61 on IPPC. Further informati overall system of IPPC, together with Government policy and more detailed advice on the of the Regulations, can be found in the Department of the Environment, Transport and the (DETR) document <i>IPPC: A Practical Guide,</i> (see Ref. 3).</li> <li>The "BAT" approach of IPPC is different from regulatory approaches based on fixed nation limits (except where General Binding Rules (GBRs) have been issued by the Secretary of legal instrument which ultimately defines BAT is the permit and this can only be issued at t installation level. The role of national guidance (such as this) for each sector is to express standards. Where these are laid out, they should be applied unless there is strong justification of the course of action. This version of the document may not contain the entire range o standards and where this is the case the operator must justify, using BAT criteria, why the being proposed in the application could be considered to be BAT. Justification for these te and any departures from stated standards, in either direction, can be made taking into acceleration.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |
| based, NOT<br>national<br>emission limits<br>installation level. The role of national guidance (such as this) for each sector is to express<br>standards. Where these <u>are</u> laid out, they should be applied unless there is strong justifica<br>another course of action. This version of the document may not contain the entire range o<br>standards and where this is the case the operator must justify, using BAT criteria, why the<br>being proposed in the application could be considered to be BAT. Justification for these te<br>and any departures from stated standards, in either direction, can be made taking into account                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nd Control<br>tion on the<br>interpretati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |
| environmental conditions. Notwithstanding this, if there are any applicable mandatory EU limits, they must be met first, although BAT may go further than them.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | State). The<br>the<br>s indicative<br>ation for<br>of relevant<br>techniques<br>count the<br>cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |
| <b>BAT and EQSs</b> The "BAT" approach is also different from, but complementary to, regulatory approaches b<br>Environmental Quality Standards (EQS). Essentially BAT requires measures to be taken t<br>where this is not practicable, to reduce emissions. That is, if emissions can be reduced fur<br>prevented altogether, at reasonable cost, then this should be done irrespective of whether<br>environmental quality standards are already being met. It requires us not to consider the e<br>as a recipient of pollutants and waste, which can be filled up to a given level, but to do all t<br>practicable to minimise the impact of industrial activities. The process considers what can<br>reasonably achieved within the installation first (this is covered by Sections 2 and 3 of this<br>and only then checks to ensure that the local environmental conditions are secure, (Sectio<br>Guidance and Ref. 5). The BAT approach is, in this respect, a more precautionary one, will<br>beyond the requirements of Environmental Quality Standards.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | to prevent<br>urther, or<br>r any<br>environmer<br>that is<br>be<br>Guidance)<br>on 4 of this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |
| Conversely, it is feasible that the application of what is BAT may lead to a situation in whic still threatened. The Regulations therefore allow for expenditure beyond BAT where neces However, this situation should arise very rarely assuming that the EQS is soundly based o assessment of harm. The BAT assessment, which balances cost against benefit (or preventioned to protect the environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | essary.<br>on an<br>ention of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |
| Advice on the relationship of environmental quality standards and other standards and obli given in <i>IPPC: A Practical Guide</i> (see Ref. 3). General information relevant to this sector a requirements for each substance are given in Section 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |
| In the sector evel BAT reference document (BREF) for each sector. The BREF is the result of an exchange information which member states should take into account when determining BAT, but whe flexibility to member states in its application. This UK Guidance Note lays down the interin of the BREF) indicative standards and expectations in the UK. At this national level, techn are considered to be BAT should, first of all, represent an appropriate balance of costs and a typical, well-performing installation in that sector. Secondly, the techniques should norm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The assessment of BAT takes place at a number of levels. At the European level, the EC issues a BAT reference document (BREF) for each sector. The BREF is the result of an <b>exchange of information</b> which member states should take into account when determining BAT, but which leaves flexibility to member states in its application. This UK Guidance Note lays down the interim (in advanc of the BREF) indicative standards and expectations in the UK. At this national level, techniques which are considered to be BAT should, first of all, represent an appropriate balance of costs and benefits for a typical, well-performing installation in that sector. Secondly, the techniques should normally be affordable without making the sector as a whole uncompetitive either on a European basis or |  |  |  |  |  |  |  |  |  |
| When assessing the applicability of the sectoral, indicative BAT standards at the installatio departures may be justified in either direction as described above. The most appropriate to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |

| INTRODU                                          | CTION                                                                                                      | TEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CHNIQUES                                                                                                           | S                                                 | EMI                                                         | SSIONS                                                                     | IMP                                                                                           | ACT                                           |  |  |  |  |  |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------|--|--|--|--|--|
| IPPC and<br>BAT                                  | Making an application                                                                                      | Installations<br>covered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Review periods                                                                                                     | Key                                               | issues                                                      | Summary of releases                                                        | Sector<br>overview                                                                            | Economic<br>aspects                           |  |  |  |  |  |
| Assessing BAT<br>at the<br>installation<br>level | costs and<br>company p<br>In summar<br>installation                                                        | nd upon local fac<br>benefits of the a<br>profitability is <b>no</b><br>ry, departures m<br>concerned, its g<br>f individual comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | vailable options<br>t considered.<br>ay be justified of<br>geographical loc                                        | may b<br>n the g<br>ation a                       | e needed<br>rounds of<br>and the lo                         | to establish the<br>the technical c<br>cal environment                     | best option. In<br>haracteristics o<br>tal conditions b                                       | ndividual<br>f the<br>ut not on               |  |  |  |  |  |
|                                                  | While BAT<br>account in<br>• where<br>item of<br>differer<br>the sec                                       | , (see Refs. 3 ar<br>cannot be limite<br>the following lim<br>the BAT cost/be<br>plant is due for<br>nt design when a<br>ctor can be expre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ed by individual<br>hited circumstan<br>nefit balance of<br>renewal/renovat<br>dryer comes up<br>essed in terms of | ces:<br>an imp<br>tion an<br>p for re<br>of local | provement<br>yway (e.g<br>placemer<br>investme              | only becomes<br>. BAT for dryin<br>nt). In effect, the<br>nt cycles.       | favourable whe<br>g may be to ch<br>ese are cases v                                           | en the relevant<br>ange to a<br>where BAT for |  |  |  |  |  |
| Innovation                                       | approp<br>installa                                                                                         | <ul> <li>where a number of expensive improvements are needed, a phasing programme may be<br/>appropriate as long as it is not so extended that it could be seen to be rewarding a poor performing<br/>installation, (see Ref. 5 for more details).</li> <li>The Regulators encourage the development and introduction of new and innovative techniques which</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                    |                                                   |                                                             |                                                                            |                                                                                               |                                               |  |  |  |  |  |
| Innovation                                       | meet the E<br>performan<br>appropriate<br>the best av<br>delay the i<br>installation<br>at the insta       | The Regulators encourage the development and introduction of new and innovative techniques which meet the BAT criteria and are looking for continuous improvement in the overall environmental performance of the process as a part of progressive sustainable development. This Note describes the appropriate indicative standards at the time of writing. However, operators should keep up to date with the best available techniques relevant to the activity and this Note may not be cited in an attempt to delay the introduction of improved, available techniques. The technical characteristics of a particular installation may allow for opportunities not foreseen in the Guidance; as BAT is ultimately determined at the installation level (except in the case of GBRs) it is valid to consider these even where they go beyond the indicative standards. |                                                                                                                    |                                                   |                                                             |                                                                            |                                                                                               |                                               |  |  |  |  |  |
| New<br>installations                             | departures<br>should nor<br>the require                                                                    | The indicative requirements apply to both new and existing activities but it will be more difficult to justify departures from them in the case of new activities. For new installations the indicative requirements should normally be in place before the commencement of operations. In some cases, such as where the requirement is for an audit of ongoing operations this is not feasible and indicative upgrading timescales are given for such cases.                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |                                                   |                                                             |                                                                            |                                                                                               |                                               |  |  |  |  |  |
| Existing<br>installations -<br>standards         | acceptable                                                                                                 | sting activity, a le<br>where the activ<br>nt (see Section 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ity already oper                                                                                                   | ates to                                           |                                                             |                                                                            |                                                                                               |                                               |  |  |  |  |  |
| Existing<br>installations -<br>timescales        | <ul> <li>a number of</li> <li>the ma<br/>and en<br/>emission</li> <li>the large</li> <li>longer</li> </ul> | timescales will<br>of categories:<br>ny good practice<br>ergy audits, bun<br>ons, energy base<br>ger, usually more<br>term studies ree<br>ements should b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e requirements in<br>ding, good hous<br>eline measures,<br>e capital intensiv<br>quired for contro                 | n Secti<br>sekeep<br>waste<br>ve impr<br>ol, envi | on 2, suc<br>ing mease<br>handling<br>ovements<br>ronmental | h as manageme<br>ures to prevent<br>facilities and me<br>s<br>impacts etc. | ent systems, wa<br>fugitive or accio<br>onitoring equip                                       | aste, water<br>dental<br>ment;                |  |  |  |  |  |
|                                                  | programm                                                                                                   | nprovements sho<br>e of any other ite<br>ny longer timesc<br>above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ems should be c                                                                                                    | omple                                             | ted <u>at the</u>                                           | latest within 3 y                                                          | ears of the issu                                                                              | ue of the                                     |  |  |  |  |  |
|                                                  | Improve                                                                                                    | ment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                    |                                                   |                                                             | By whicheve                                                                | r is the later of                                                                             |                                               |  |  |  |  |  |
|                                                  |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                    | (see<br>mate                                      | section 1.3<br>rials                                        | Section 6.8di<br>) – Animal raw                                            | Activities under Section 6.8dii a<br>6.8e(see section 1.3) – Vegeta<br>raw materials and milk |                                               |  |  |  |  |  |
|                                                  | Waste m<br>with secti                                                                                      | inimisation audit<br>ion 2.2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | in accordance                                                                                                      | or 1<br>the p                                     | ermit                                                       | the issue of                                                               | permit                                                                                        | om the issue of the                           |  |  |  |  |  |
|                                                  |                                                                                                            | of water use (wa<br>accordance with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                    | or 1                                              | ugust 200<br>year from<br>permit                            | 5<br>the issue of                                                          | 31 March 2000<br>or 1 year from<br>permit                                                     | 6<br>the issue of the                         |  |  |  |  |  |
|                                                  |                                                                                                            | cant should ind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                    |                                                   |                                                             | voring all impr                                                            | •                                                                                             |                                               |  |  |  |  |  |

The Applicant should include a proposed timetable covering all improvements.



- **Note 1** The amount of detail needed to support the application should be sufficient to support the applicant's contention that either the conditions of the guidance have been met or an alternative measure has been justified. The level of detail should be commensurate with the scale of the operation and its ability to cause pollution. An applicant is not required to supply detail that could not reasonably be expected to contribute to a decision to issue a permit.
- **Note 2** For existing IPC or Waste Management permit holders, your response to each point in Sections 2, 3 or 4 may rely heavily on your previous application. The Agency does not wish you to duplicate information as long as the previous information adequately addresses the issues. However, the more the information can be reorganised to demonstrate that all the issues have been adequate addressed the better. You will need to send us copies of any information referred to.
- **Note 3** The contents of the outlined BAT boxes in Sections 2, 3 and 4, and additional blank tables etc., are available electronically on the Agency's Website, for the assistance of applicants.

| INTRO           | DUCTION               | TEC                      | TECHNIQUES     |    |          | SSIONS              | IMPACT             |                     |  |
|-----------------|-----------------------|--------------------------|----------------|----|----------|---------------------|--------------------|---------------------|--|
| IPPC and<br>BAT | Making an application | Installations<br>covered | Review periods | Ke | y issues | Summary of releases | Sector<br>overview | Economic<br>aspects |  |

### **1.3 Installations Covered**

This Note covers installations described in Part A(1) of Section 6.8 of Schedule 1 to the PPC Regulations (see Ref. 2) as follows:

- (d) Treating and processing materials intended for the production of food products from -
  - (i) animal raw materials (other than milk) at plant with a finished product production capacity greater than 75 tonnes per day;
  - (ii) vegetable raw materials at plant with a finished product production capacity greater than 300 tonnes per day (average value on a quarterly basis).
- (e) Treating and processing milk, the quantity of milk received being greater than 200 tonnes per day (average value on an annual basis).

The installation includes the main activities as stated above and associated activities which have a technical connection with the main activities and which may have an effect on emissions and pollution. They include, as appropriate:

- storage and handling of raw materials;
- washing;
- mixing and blending;
- heating and cooking;
- drying;
- cleaning;
- storage and despatch of finished products;
- · the control and abatement systems for emissions to all media;
- the power plant

However, the impact of the activities on the environment may be wider than just the on-site activities. The Note, and the Regulations, cover issues downstream of the installation such as the final disposal of wastes and wastewaters.

Advice on the extent of the physical site which is contained within the installation, for example split sites, is given in *IPPC Part A(1) Installations: Guide for Applicants*, (see Ref. 4). Operators are advised to discuss this issue with the Agency prior to preparing their application.

Where associated activities are carried out in conjunction with the main activities and are not covered in this guidance note (for example combustion activities), reference should be made to:

- other relevant IPPC Guidance Notes; and,
- other relevant guidance notes issued under EPA 90 (e.g. Ref. 22).

Where appropriate, the Secretary of State's Guidance for Local Authority Air Pollution Control. (NB In Northern Ireland this guidance is produced by the Department of the Environment). For this sector, this would apply in particular to guidance on combustion plants.

However, the impact of the activities on the environment may be wider than just the on site activities. The Note, and the regulations, cover issues downstream of the installation such as the final disposal of wastes and wastewaters.

| INTRODUCTION    |                       |  | TECHNIQUES           |                   |    | EMIS     | SSIONS              | IMPACT             |                     |  |
|-----------------|-----------------------|--|----------------------|-------------------|----|----------|---------------------|--------------------|---------------------|--|
| IPPC and<br>BAT | Making an application |  | tallations<br>overed | Review<br>periods | Ke | y issues | Summary of releases | Sector<br>overview | Economic<br>aspects |  |

# **1.4 Review Periods**

Permits can be reviewed or varied at any time. However, the PPC Regulations impose a requirement on regulators to review permits in certain specific circumstances such as where the pollution caused by the installation is of such significance that the existing emission limit values need to be revised or new limits set.

In addition, regulators are required to review the conditions of permits "periodically". The Government, in its third consultation paper (England, Wales and Scotland) on the implementation of IPPC, stated that the new site-specific IPPC technical guidance notes would provide guidance on appropriate review periods for each sector, taking into consideration guidance on the relevant criteria to be provided by the Government. Examples of the likely relevant criteria for setting these review periods were stated as "the risk and level of environmental impacts associated with the sector" and "the cost to the regulators and regulated industry of undertaking the reviews"

The Regulators consider that at the present time, having regard to those criteria, it is in fact appropriate to set indicative minimum review periods which differ only between those sectors which have been subject to integrated permitting (i.e. IPC or Waste Management Licensing) and those which have not. It is therefore proposed that Permit conditions should normally be reviewed on the following basis:

- for individual activities NOT previously subject to regulation under IPC or Waste Management Licensing, a review should normally be carried out within four years of the issue of the IPPC Permit;
- for individual activities previously subject to regulation under IPC or Waste Management Licensing, a review should normally be carried out within six years of the issue of the IPPC Permit.

This means that activities/installations not currently in IPC or Waste Management Licensing will be initially reviewed within four years and thereafter within six years.

This period will be kept under review and, if any of the above factors change significantly, may be shortened or extended.

| INTRODUCTION    |                       |   | TECHNIQUES           |                   |    | EMIS     | SSIONS              | IMPACT             |                     |  |
|-----------------|-----------------------|---|----------------------|-------------------|----|----------|---------------------|--------------------|---------------------|--|
| IPPC and<br>BAT | Making an application | - | tallations<br>overed | Review<br>periods | Ke | y issues | Summary of releases | Sector<br>overview | Economic<br>aspects |  |

## 1.5 Key Issues for this Sector

An assessment of the issues indicates that there are no areas where there is a fundamental clash between good environmental practice and good business practice. However the implementation of pollution prevention and control measures represents a balance between environmental protection and costs incurred by the operators and will not always result in cost savings for the operator.

#### Waste minimisation

Commercial considerations mean that the controls of parameters such as process yield and product wastage are usually understood. These parameters are also key pollution prevention issues as product loss accounts for a significant proportion of the sectors environmental impact.

#### Water use

The sector is a significant water consumer for process consumption, means of conveyance and cleaning. In addition to minimising the use of a raw material, measures to optimise water use will be important pollution prevention measures relating to effluent management. There are a number of opportunities to either reuse water (for example low-grade wash waters) or to recycle water from for example membrane systems (also see **Hygiene and Food Safety**).

#### Releases associated with energy use

The industry is a major energy user. There remain significant opportunities for reduction of emissions caused by energy use and choice of energy source ( $CO_2$ , SOx, NOx, etc. contributing in particular to global warming and acidification). The industry will enter into a Climate Change Levy Agreement with the Government. The applicability of techniques and standards for IPPC is explained in Section 2.6.

#### Emissions to air

It is an inherent factor within many food and drink processes that emissions of VOC and odour arise, for example from cooking and drying processes. Emissions of dust and particulate can also be a factor from activities such as mixing, grinding, milling and transfer of materials. Odour emissions can be problematic, not only because of the sometimes subjective nature of the problem, but as emissions tend to be fugitive. Other fugitive emissions considerations include those potentially arising from refrigeration and cooling systems.

#### Effluent management

Other than the predominantly "dry" activities, for example milling, most food and drink processes generate wastewaters. The composition of the effluent is highly variable, dependant on the activity, working patterns, product wastage and cleaning systems. Of these the most important is keeping raw materials, intermediates, product and by product out of the wastewaters, by controlling product wastage and cleaning processes.

#### Accident risk

Many materials used by the sector have high oxygen demand and spills and leaks into the water environment are can be serious events. In addition to normal spills and process leaks, they typically arise from for example, overfilling of vessels and failure of containment, wrong drainage connections and blocked drains.

#### Hygiene and food safety

Health and safety and product quality issues apply to industry as a whole, but hygiene and food safety is of fundamental importance to the food and drink sector. Consequently particular attention must be given to these considerations when specifying particular techniques, especially in relation to pollution prevention measures, in for example measures relating to water use, cleaning and reuse and recycling of water. Industry experience of managing risk in relation to hygiene and food safety issues is a sound basis for environmental management issues.

| INTRO           | DUCTION               | TE                       | TECHNIQUES     |    |           | SSIONS              | IMPACT             |                     |
|-----------------|-----------------------|--------------------------|----------------|----|-----------|---------------------|--------------------|---------------------|
| IPPC and<br>BAT | Making an application | Installations<br>covered | Review periods | Ke | ey issues | Summary of releases | Sector<br>overview | Economic<br>aspects |

# 1.6 Summary of Releases

| SOURCE                                | Storage and handling of raw materials | Cutting, sorting, peeling and washing | Mixing and blending (powders and solids) | Mixing, blending and homogenisation (solid/liquid) | Cooking, baking, roasting and frying | Pasteurisation and sterilisation | Solvent extraction | Drying and evaporation | Cleaning and sanitisation | Storage and dispatch of finished products | Cooling and refrigeration | Combustion plant | Effluent plant (Note 1) |
|---------------------------------------|---------------------------------------|---------------------------------------|------------------------------------------|----------------------------------------------------|--------------------------------------|----------------------------------|--------------------|------------------------|---------------------------|-------------------------------------------|---------------------------|------------------|-------------------------|
| Oxides of sulphur                     | -                                     | -                                     | -                                        | -                                                  | -                                    | -                                | -                  | -                      | -                         | -                                         | -                         | А                | -                       |
| Oxides of nitrogen & carbon           | -                                     | -                                     | -                                        | -                                                  | А                                    | -                                | -                  | -                      | -                         | -                                         | -                         | -                | -                       |
| Particulate/TSS                       | AW                                    | W                                     | AW                                       | W                                                  | А                                    | W                                | -                  | AW                     | AW                        | AW                                        | -                         | Α                | W                       |
| COD/BOD                               | W                                     | W                                     | -                                        | W                                                  | W                                    | W                                | W                  | W                      | W                         | W                                         | -                         | -                | W                       |
| Odour                                 | Α                                     | AW                                    | W                                        | А                                                  | А                                    | AW                               | А                  | А                      | Α                         | Α                                         | -                         | А                | Α                       |
| Biocides                              | -                                     | W                                     | -                                        | -                                                  | -                                    | -                                | -                  | -                      | W                         | -                                         | -                         | -                | W                       |
| Dispersants & surfactants             | -                                     | -                                     | -                                        | -                                                  | -                                    | -                                | -                  | -                      | W                         | -                                         | -                         | -                | -                       |
| Phosphates & nitrates                 | -                                     | -                                     | -                                        | -                                                  | -                                    |                                  |                    | -                      | W                         | -                                         | -                         | -                | -                       |
| Refrigerants<br>Ammonia, HCFC, Glycol | -                                     | -                                     | -                                        |                                                    | -                                    | -                                | -                  | -                      | -                         | -                                         | AW                        | W                | W                       |
| Sludges                               | -                                     | -                                     | -                                        |                                                    | -                                    |                                  |                    | -                      | -                         | -                                         | -                         | -                | L                       |
| KEY                                   | A – R                                 | elease                                | to Air, V                                | V – Rele                                           | ease to \                            | Nater,                           | L – Rele           | ease to L              | and                       |                                           |                           |                  |                         |

**Note 1** Most of the other releases water pass through the ETP. Included here are only those which arise as a direct result of the operation of the ETP.

Releases to air usually result in a subsequent, indirect emission to land and can therefore affect human health, soil and terrestrial ecosystems.

Releases identified above to water can all also appear in the effluent treatment sludge (see Section 2.5).

For releases from combustion plant see the appropriate guidance (see Section 2.3.10).

| INTRODUCTION    |                       |  | TECHNIQUES         |                   |    | EMIS     | SSIONS              | IMPACT             |                     |  |
|-----------------|-----------------------|--|--------------------|-------------------|----|----------|---------------------|--------------------|---------------------|--|
| IPPC and<br>BAT | Making an application |  | allations<br>vered | Review<br>periods | Ke | y issues | Summary of releases | Sector<br>overview | Economic<br>aspects |  |

# **1.7 Overview of the Activities in this Sector**

### Table 1-1 - Breakdown of the main activities by Standard Industry Classification (SIC) code

| SIC Code              | Sub-sector                                                                 | Aggregated Sub-sector     |
|-----------------------|----------------------------------------------------------------------------|---------------------------|
| 15.11                 | Production and preserving of meat                                          |                           |
| 15.11/1               | Slaughtering of animals other than poultry and rabbits                     |                           |
| 45 44 10              | (not covered by this guidance)                                             | Primary Meat Processing   |
| 15.11 /2              | Animal by-product processing (not covered by this guidance)                |                           |
| <u>15.12</u><br>15.13 | Production and preserving of poultry meat                                  |                           |
| 15.13                 | Production of meat and poultry meat products<br>Bacon and ham production   | Secondary Meat            |
| 15.13/1               | Other meat and poultry meat processing                                     | Processing                |
| 15.20                 | Processing and preserving of fish and fish products                        |                           |
| 15.20/1               | Freezing of fish                                                           | Fish Processing           |
| 15.20/2               | Other fish processing and preserving                                       | i lent recessing          |
| 15.31                 | Processing and preserving of potatoes                                      |                           |
| 15.32                 | Manufacture of fruit and vegetable juice                                   | Fruit & Vegetable         |
| 15.33                 | Processing and preserving of fruit and vegetables not elsewhere classified | Processing                |
| 15.41                 | Manufacture of crude oils and fats                                         |                           |
| 15.42                 | Manufacture of refined oils and fats                                       | Oils & Fats               |
| 15.43                 | Manufacture of margarine and similar edible fats                           |                           |
| 15.51                 | Operation of dairies and cheese making                                     |                           |
| 15.51/1               | Liquid milk and cream production                                           |                           |
| 15.51/2               | Butter and cheese production                                               | Milk Processing           |
| 15.51 /3              | Manufacture of other milk products                                         |                           |
| 15.52                 | Manufacture of ice cream                                                   |                           |
| 15.61<br>15.61/1      | Manufacture of grain mill products<br>Grain milling                        |                           |
| 15.61/1               | Manufacture of breakfast cereals and cereals-based foods                   | Cereal Processing         |
| 15.62                 | Manufacture of starches and starch products                                |                           |
| 15.71                 | Manufacture of prepared feeds for farm animals                             | Animal Feed               |
| 15.72                 | Manufacture of prepared pet foods                                          | Petfood                   |
| 15.81                 | Manufacture of bread; manufacture of fresh pastry goods and cakes          | 1 01000                   |
| 15.82                 | Manufacture of rusks and biscuits; manufacture of preserved pastry goods   | Bread, Cakes and Biscuits |
|                       | and cakes                                                                  |                           |
| 15.83                 | Manufacture of sugar                                                       | Sugar                     |
| 15.84                 | Manufacture of cocoa; chocolate and sugar confectionery                    | Chocolate and             |
| 15.84/1               | Manufacture of cocoa and chocolate confectionery                           | confectionery             |
| 15.84/2               | Manufacture of sugar confectionery                                         | connectionery             |
| 15.85                 | Manufacture of macaroni, noodles, couscous and similar farinaceous         | Pasta products            |
|                       | products                                                                   |                           |
| 15.86                 | Processing of tea and coffee                                               | The second second         |
| 15.86/1               | Tea processing.<br>Production of coffee and coffee substitutes             | Tea and coffee            |
| 15.86/2<br>15.87      | Manufacture of condiments and seasonings                                   |                           |
| 15.88                 | Manufacture of homogenised food preparations and dietetic food             |                           |
| 15.89                 | Manufacture of other food products not elsewhere classified                | Miscellaneous             |
| 15.89/1               | Manufacture of soup'                                                       | Wiecenariecede            |
| 15.89/2               | Manufacture of other food products not elsewhere classified                |                           |
| 15.91                 | Manufacture of distilled potable alcoholic beverages                       | 1                         |
| 15.92                 | Production of ethyl alcohol from fermented materials                       |                           |
| 15.93                 | Manufacture of wines                                                       |                           |
| 15.93/1               | Manufacture of wine of fresh grapes and grape juice                        |                           |
| 15.93/2               | Manufacture of wine based on concentrated grape must                       |                           |
| 15.94                 | Manufacture of cider and other fruit wines                                 | Beverages and brewing     |
| 15.94/1               | Manufacture of cider and perry                                             |                           |
| 15.94/2               | Manufacture of other fermented fruit beverages                             |                           |
| 15.95                 | Manufacture of other non-distilled fermented beverages                     |                           |
| 15.96                 | Manufacture of beer                                                        |                           |
| 15.97<br>15.98        | Manufacture of malt<br>Production of mineral waters and soft drinks        |                           |
| 10.90                 | FTUUULIUH UI HIIHEI AI WALEIS AHU SUIL UIHIKS                              |                           |

| INTRO           | INTRODUCTION          |  | TECHNIQUES          |                |    | EMIS     | SSIONS              | IMPACT             |                     |  |
|-----------------|-----------------------|--|---------------------|----------------|----|----------|---------------------|--------------------|---------------------|--|
| IPPC and<br>BAT | Making an application |  | allations<br>overed | Review periods | Ke | y issues | Summary of releases | Sector<br>overview | Economic<br>aspects |  |

# **1.8 Economic Aspects**

The food and drink industry is an important part of the manufacturing industry in the UK. It is the largest industrial sector in turnover terms: with a market value in excess of £90 billion. It is a large and diverse sector and accounts for about 9% of manufacturing output and a commensurate fraction of the jobs available in UK manufacturing. Table 1-1 shows a breakdown of the main activities by SIC code and it is clear that a wide range of activities are represented.

In terms of turnover, which one might take as a crude measure of production capacity, activity in the sector is dominated by a relatively small number of large companies. The food and drink industry comprises of about ten thousand separate companies, but only about 350 employ more than 400 people. However these large companies are responsible for about 60% of the turnover within the sector. Given the concentration of the IPPC directive on installations of large capacity a relatively small fraction of the total number of companies in this industrial sector might be expected to fall within the scope of the IPPC regulations.

The food processing industry is extremely complex and can be characterised as follows:

- there are a wide range of unit operations;
- some of the unit operations such as pasteurisation (see section 2.3.5.3), ohmic heating (see section 2.3.15) are hardly known outside of the immediate industry;
- it is estimated that 65% of the industry is batch process;
- the consumer market is becoming more sophisticated and demanding;
- there is a continual need for process innovation;
- plant and equipment needs to be flexible to respond to changes in demand;
- quality of production is paramount (and is matched only by pharmaceutical standards).

These factors contribute to making the plant and equipment of food production increasingly complex. Associated abatement equipment needs to be equally flexible and adaptable. There is a potential reluctance to invest in large capital abatement plant when it may be redundant by a change in the production process.

The food and drink marketplace is characterised by:

- short time-to-market and competitiveness, where the time between product conception and delivering the product to the marketplace is continually reducing. Against a background of increasing competitiveness and reduced margins, the emphasis during product development is on the production process itself;
- product innovation with more and more product variations available now to the consumer. This
  implies that existing products face stiffer competition and product lifetimes become shorter with the
  result that manufacturing processes and production lines require change more frequently;
- product complexity with the introduction of new flavours, mixtures and combinations of products, pre-prepared products, new packaging etc;
- the production runs also become shorter as tastes and fads change more frequently;
- raw materials are generally natural and are therefore more variable than other sectors.

All of these factors contribute to the dynamic and complex nature of food production. While this can imply the potential for more frequent upgrade of processing equipment, it has the drawback of providing a degree of instability.

| Γ | INTRODUCTION |                  |                | TECHNIQUES       |                 |       | EMISSIONS |           |       | IMPACT     |         |                        |
|---|--------------|------------------|----------------|------------------|-----------------|-------|-----------|-----------|-------|------------|---------|------------------------|
| ſ | Management   | Materials inputs | Activ<br>abate | /ities/<br>ement | Ground<br>water | Waste | Energy    | Accidents | Noise | Monitoring | Closure | Installation<br>issues |

# **2 TECHNIQUES FOR POLLUTION CONTROL**

This section summarises, in the outlined BAT boxes,

#### BAT Boxes to help in preparing applications

- what is required in the Application
- the indicative standards (i.e. what is BAT in most circumstances).

The indicative standards cover the techniques and measures which, in combination with those in the existing (IPC/Waste) guidance, have been identified as representing BAT in a general sense. They also cover the other requirements of the PPC Regulations and requirements of other Regulations (such as the Waste Management Licensing Regulations (see Appendix 2 for equivalent legislation in Scotland and Northern Ireland) and the Groundwater Regulations insofar as they are relevant to an IPPC Permit. For the sake of brevity these boxes simply use the term "BAT".

At the top of each BAT box is the question from the Application Form (derived from the Regulations) which is being addressed, (see Section 1.2).

In responding to the requirements the operator should keep the following general principles in mind:

- As a first principle there should be evidence in the application that full consideration has been given to the possibility of **PREVENTING** the release of harmful substances. This may, most commonly be by waste minimisation techniques see Section 2.2.1. The technology is available and there is also scope in many sectors to prevent or reduce releases of water see Sections 2.2.3 and 2.3.12. Similarly waste reuse or recovery can prevent waste emissions.
- Only where that is not practicable should the second principle be adopted of **REDUCING** emissions which may cause harm.
- All available options should be reviewed and it should be demonstrated that the selected combination of primary process and abatement equipment satisfies the Regulations.
- In general pollution control equipment should be kept running during start-up and shut-down for as long as is necessary to ensure compliance with release limits in permits.
- All plant and equipment should be subject to regular preventative maintenance programmes, in line with operational requirements, to ensure continued optimum performance. This should be detailed in response to Section 2.1 and elsewhere as appropriate.

| INTROD     |                     | TECHNIQUES               |                 |       | EMISSI |           |       | IMPACT     |         |                     |
|------------|---------------------|--------------------------|-----------------|-------|--------|-----------|-------|------------|---------|---------------------|
| Management | Materials<br>inputs | Activities/<br>abatement | Ground<br>water | Waste | Energy | Accidents | Noise | Monitoring | Closure | Installation issues |

# 2.1 Management Techniques

Within IPPC, an effective system of management is a key technique for ensuring that all appropriate pollution prevention and control techniques are delivered reliably and on an integrated basis. The Regulators strongly support the operation of environmental management systems (EMSs). An operator with such a system will find it easier to complete not only this section but also the technical/regulatory requirements in the following sections.

The Regulators recommend that the ISO 14001 standard is used as the basis for an environmental management system. Certification to this standard and/or registration under EMAS (EC Eco Management and Audit Scheme) (OJ L168, 10.7.93) are also strongly supported. Both certification and registration provide independent verification that the EMS conforms to an assessable standard. EMAS now incorporates ISO 14001 as the specification for the EMS element. For further details about ISO 14001 and EMAS contact British Standards Institute (BSI) and the Institute of Environmental Management and Assessment (IEMA) respectively.

The steps required in this and subsequent sections may help the operator to make good any shortfalls in their management system. An effective EMS will help the operator to maintain compliance with regulatory requirements and to manage other significant environmental impacts. While the requirements below are considered to be BAT for IPPC, they are the same techniques as required in a formal EMS and are also capable of delivering wider environmental benefits. However it is information on their applicability to IPPC which is primarily required in this Application.

Application Form Question 2.1 Provide details of your proposed management techniques.

#### BAT for management techniques

BREF Sections 4.4.1, 5.4.2, 6.4.2

#### With the Application the operator should:

 Describe their management system in detail to demonstrate how it meets the "Requirements for an effective management system" below. The description should make clear who holds responsibility for each of the requirements and, where indicated in the second column, how the aspects are delivered and recorded for IPPC. Copies of all procedures are not needed, but examples may be included in your application.

If you are certified to ISO 14001 or registered under EMAS (or both) you may provide a statement derived from certification records/assessments to support your application.

Further specific management procedures are dealt with under the appropriate section on the remainder of the document. It is recommended that you understand all the requirements of the application before completing this section, as many management issues are dealt with in other sections.

2. The type of management system employed will depend upon the scale and complexity of the operations undertaken. The operator should demonstrate that the proposals are BAT, by confirming compliance with the indicative requirements below and by justifying departures (as described in Section 1.2 and in the Guide to Applicants) or alternative measures.

### Indicative BAT Requirements

The operator should have a management system in place for the activities which delivers the requirements given in column 1 below. The development of any aspects of the management system not already in place should be completed within the timescale given in Section 1.1.

| Ree | quirement for an effective management system                                                                                                        | How delivered for IPPC                                              |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| 1.  | Clear management structure and allocated<br>responsibilities for environmental performance, in<br>particular meeting the aspects of the IPPC Permit | Describe in this section who has allocated responsibilities         |
| 2.  | Identification, assessment and management of<br>significant environmental impacts                                                                   | By responding to the requirements in Section 4.1 in the Application |
| 3.  | Compliance with legal and other requirements applicable to activities impacting on the environment                                                  | Compliance with the permit satisfies this requirement               |
|     | applicable to activities impacting on the environment                                                                                               | satisfies this requirement                                          |

Cont.

| INTRODU                                        |                   |                                                                                                 |                                                             | QUES                                          | 6                                 | EMISS                                        | ONS       | 5                                                                                          |                                            | IMPA                                                          | СТ                                       |
|------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|-----------------------------------|----------------------------------------------|-----------|--------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------|------------------------------------------|
| Management                                     | Materia<br>inputs | ls Activities/<br>abatement                                                                     | Ground<br>water                                             | Waste                                         | Energy                            | Accidents                                    | Noise     | e Mo                                                                                       | nitoring                                   | Closure                                                       | Installation<br>issues                   |
|                                                |                   |                                                                                                 |                                                             |                                               |                                   |                                              |           |                                                                                            |                                            |                                                               |                                          |
| BAT for<br>management<br>techniques<br>(cont.) | 4.<br>5.          | Establishing<br>objectives a<br>requirements<br>performance<br>Environmen<br>implement p        | nd targets<br>and contir<br>tal improv                      | to prevenually im                             | prove env                         | on, meet leg<br>vironmental                  | al        | propo<br>Section<br>propo                                                                  | sals in rons 2.2 to<br>sals may<br>the Per | should m<br>esponse t<br>o 2.12. T<br>y be incor<br>mit impro | o each of<br>hese<br>porated             |
|                                                | 6.                | Establish op<br>minimise sig                                                                    | erational                                                   | controls                                      | to preve                          | ent and                                      |           | By responding to the requirer<br>in Sections 2.2 to 2.7, 2.11 a<br>2.12 in the Application |                                            |                                                               |                                          |
|                                                | 7.                | Preventative plant and eq                                                                       |                                                             |                                               |                                   |                                              |           |                                                                                            |                                            | em here.<br>Section 2                                         |                                          |
|                                                | 8.                | Emergency                                                                                       | planning a                                                  | and acci                                      | dent prev                         | vention                                      |           |                                                                                            |                                            | g to the re<br>in the Ap                                      | quirements<br>plication                  |
|                                                | 9.                | Monitoring a                                                                                    |                                                             |                                               |                                   |                                              |           | Descr                                                                                      | ibe in th                                  | is Sectior                                                    | 1                                        |
|                                                |                   | Identify key in<br>establish and<br>monitor indica<br>performance                               | I maintain a                                                | a prograi                                     | mme to m                          | easure and                                   |           |                                                                                            |                                            |                                                               |                                          |
|                                                | 10.               | Monitoring a<br>• to ensure                                                                     |                                                             | -                                             |                                   | ns as intende                                | ed;       |                                                                                            |                                            | g to the re<br>in the Ap                                      | quirements<br>plication                  |
|                                                |                   |                                                                                                 | faults and                                                  |                                               | •                                 |                                              |           |                                                                                            |                                            |                                                               |                                          |
|                                                |                   |                                                                                                 | slow chan<br>ative maint                                    |                                               | ant perfo                         | rmance to tri                                | gger      |                                                                                            |                                            |                                                               |                                          |
|                                                | 11.               | Training                                                                                        |                                                             |                                               |                                   |                                              |           |                                                                                            |                                            | ed in this                                                    |                                          |
|                                                |                   | Provision of a relevant staff equipment ar                                                      | (including                                                  | contract<br>ls), which                        | ors and tl<br>n should i          | nose purchas<br>nclude:                      | sing      | the ar                                                                                     | eas cov                                    | ered by S                                                     | for each of<br>ections 2.2<br>re covered |
|                                                |                   | required                                                                                        | for each jo                                                 | ob;                                           |                                   | npetencies                                   |           |                                                                                            |                                            |                                                               |                                          |
|                                                |                   | for the a                                                                                       | ctivity and                                                 | their wo                                      | rk activitie                      |                                              |           |                                                                                            |                                            |                                                               |                                          |
|                                                |                   | operatio                                                                                        | n under no                                                  | ormal and                                     | d abnorma                         | ntal effects fi<br>al circumstar             | nces;     |                                                                                            |                                            |                                                               |                                          |
|                                                |                   | taken wh                                                                                        | nen accide                                                  | ntal emis                                     | sions oc                          |                                              |           |                                                                                            |                                            |                                                               |                                          |
|                                                |                   |                                                                                                 |                                                             |                                               |                                   | raining recor                                |           |                                                                                            |                                            |                                                               |                                          |
|                                                |                   | Expertise rec<br>out. Howeve<br>whom the ins<br>sufficient qua<br>roles. This n<br>standards or | er, both tec<br>stallation's<br>alifications,<br>nay be ass | hnical ar<br>compliar<br>training<br>essed ag | nd manag<br>nce deper<br>and expe | erial staff up<br>nds need<br>rience for the | on<br>eir |                                                                                            |                                            |                                                               |                                          |
|                                                | 12.               | Communicat<br>potential not                                                                     | n-complia                                                   | nce and                                       | complai                           | nts                                          |           | Descr                                                                                      | ibe in th                                  | is Sectior                                                    | 1                                        |
|                                                |                   | Actions taker to operations                                                                     |                                                             | ise, and                                      | about pro                         | posed chanç                                  | ges       |                                                                                            |                                            |                                                               |                                          |
|                                                | 13.               | Auditing                                                                                        |                                                             |                                               |                                   |                                              |           | Descr                                                                                      | ibe in th                                  | is Section                                                    | 1                                        |
|                                                |                   | Regular, (pre<br>activities are<br>requirements<br>audited at lea                               | being carr<br>. All of the                                  | ied out ir<br>ese requi                       | n conform                         | ity with these                               |           |                                                                                            |                                            |                                                               |                                          |
|                                                |                   |                                                                                                 |                                                             |                                               |                                   |                                              |           |                                                                                            |                                            |                                                               | _                                        |

Cont.

|            |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                                                          |                |                                                                                      |                                                                                                                                                     | ∩т           |  |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|
|            |                                                                                                                                                                                             | Activities/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CHNI<br>Ground                                                                                                                                                                                                                                                                           |                                                                                                                                                                               |                                                                                                                                                     | EMISS                                                                                                                                                    |                |                                                                                      | IMPA                                                                                                                                                | Installation |  |  |
| Wananement | nputs                                                                                                                                                                                       | abatement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | water                                                                                                                                                                                                                                                                                    | Waste                                                                                                                                                                         | Energy                                                                                                                                              | Accidents                                                                                                                                                | Noise          | Monitoring                                                                           | Closure                                                                                                                                             | issues       |  |  |
| Wananement | 14. <b>C</b><br><b>r</b><br>E<br>iii<br>a<br>c<br>C<br>F<br>F<br>C<br>C<br>C<br>15. <b>F</b><br>S<br>c<br>c<br>c<br>c<br>c<br>c<br>c<br>c<br>c<br>c<br>c<br>c<br>c<br>c<br>c<br>c<br>c<br>c | abatementwaterWasteEnergyAccidentsNoiseMo14.Corrective action to analyse faults and prevent<br>recurrenceDefine responsibility and authority for handling and<br>investigating non-conformance, taking action to mitigate<br>any impacts caused and for initiating and completing<br>corrective and preventive actionDesc<br>is det<br>2.2 to<br>approxRecording, investigating, taking corrective action and<br>preventing recurrence, in response to environmental<br>complaints and incidentsDesc15.Reviewing and Reporting Environmental Performance |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                                                          |                |                                                                                      | Describe in this Section how this<br>is dealt with for each of Sections<br>2.2 to 2.3 and 2.5 to 2.10 as<br>appropriate<br>Describe in this Section |              |  |  |
|            | I<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a                                                                                            | ncorporate e<br>aspects of the<br>PPC, in parti<br>the contro-<br>design ar<br>other cap<br>capital ap<br>the alloca<br>planning<br>incorpora<br>operating<br>purchasir<br>accountir<br>process<br>Report on en<br>results of mal<br>audit cycle), f<br>informatic<br>effectiver                                                                                                                                                                                                                                                                         | nvironmer<br>e business<br>cular:<br>of of proce<br>nd review (<br>pital project<br>oproval;<br>attion of res<br>and sched<br>tion of envi<br>g procedur<br>ng policy;<br>ng for envi<br>involved ra<br>vironment<br>nagement<br>for:<br>on require-<br>ness of the<br>s and targonents. | ntal issue<br>s, insofar<br>ess chang<br>of new fa<br>cts;<br>sources;<br>duling;<br>vironmenta<br>ather than<br>al perforr<br>reviews<br>d by the l<br>e manage<br>gets, and | as they a<br>ge on the<br>cilities, er<br>tal aspect<br>al costs ag<br>n as overl<br>nance, ba<br>(annual o<br>Regulator<br>ement sys<br>future pla | re required l<br>installation;<br>ngineering a<br>ts into norma<br>gainst the<br>neads<br>ased on the<br>r linked to th<br>; and<br>tem against<br>inned | by<br>nd<br>al | Describe in th<br>This will becor<br>requirement<br>Describe in th<br>Describe in th | me a pern<br>is Section                                                                                                                             | nit          |  |  |
|            |                                                                                                                                                                                             | statemer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                          | iabiy via                                                                                                                                                                     | public en                                                                                                                                           | monnental                                                                                                                                                |                |                                                                                      |                                                                                                                                                     |              |  |  |

| INTRODU                       |                                                                       |                       | HNIQ                      | UES                                                                                                                                                                                          | E                         | AISSIO                                                                                                                                                                                                                                                         | NS         | IMPACT                                            |                                     |                        |  |
|-------------------------------|-----------------------------------------------------------------------|-----------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------|-------------------------------------|------------------------|--|
| Management                    |                                                                       | ivities/<br>tement    | Ground<br>water           | Waste                                                                                                                                                                                        | Energy                    | Accidents                                                                                                                                                                                                                                                      | Noise      | Monitoring                                        | Closure                             | Installatior<br>issues |  |
| Selection of<br>raw materials | 2.2 M                                                                 | ateri                 | als Inp                   | outs                                                                                                                                                                                         |                           |                                                                                                                                                                                                                                                                |            |                                                   |                                     |                        |  |
|                               | This section their use an                                             |                       |                           |                                                                                                                                                                                              |                           |                                                                                                                                                                                                                                                                |            | e techniques<br>ol.                               | for both r                          | ninimising             |  |
|                               |                                                                       | ther tha              | n carbon t                | he best o                                                                                                                                                                                    |                           |                                                                                                                                                                                                                                                                |            | ne choice of<br>espective of                      |                                     |                        |  |
|                               | As a genera                                                           | al princip            | ole, the ope              | erator will                                                                                                                                                                                  | need to                   | demonstrate                                                                                                                                                                                                                                                    | the mea    | sures taken                                       | to:                                 |                        |  |
| Reduce                        |                                                                       |                       | of chemica                |                                                                                                                                                                                              |                           |                                                                                                                                                                                                                                                                |            |                                                   |                                     |                        |  |
| Substitute                    |                                                                       |                       |                           |                                                                                                                                                                                              |                           | hich can be<br>readily deal                                                                                                                                                                                                                                    |            | dily abated a                                     | and when                            | abated lea             |  |
| Understand                    | <ul> <li>underst</li> </ul>                                           | and the               | fate of no                | n-retaine                                                                                                                                                                                    | d residue                 | s and their e                                                                                                                                                                                                                                                  | environme  | ental impact,                                     | (Section                            | 4).                    |  |
|                               | 2.2.1 F                                                               | Raw m                 | naterial                  | s selec                                                                                                                                                                                      | tion                      |                                                                                                                                                                                                                                                                |            |                                                   |                                     |                        |  |
| Summary of<br>naterials in    |                                                                       |                       |                           |                                                                                                                                                                                              |                           |                                                                                                                                                                                                                                                                |            | s (for examp<br>ced by treatn                     |                                     | ng material            |  |
| ISE                           | requirement                                                           | ts of the<br>These ca | product, s<br>an range fi | ome sigr<br>rom mate                                                                                                                                                                         | iificant po<br>rials such | llution impac                                                                                                                                                                                                                                                  | cts are as | edients) is fix<br>ssociated wit<br>pot crops, to | h the prin                          | nary raw               |  |
|                               |                                                                       |                       |                           |                                                                                                                                                                                              |                           |                                                                                                                                                                                                                                                                |            | this is dealt<br>s (see Table                     |                                     |                        |  |
|                               | This section techniques                                               |                       |                           |                                                                                                                                                                                              | w materia                 | als used in th                                                                                                                                                                                                                                                 | nis sector | while Section                                     | on 2.2.2 d                          | escribes th            |  |
| ABLE 2-1 -                    | Raw mate                                                              | erial                 | P                         | urpose                                                                                                                                                                                       |                           | Summa                                                                                                                                                                                                                                                          | ry of pot  | ential enviro                                     | onmental                            | impacts                |  |
| Auxiliary<br>Materials        | Organic<br>solvents                                                   |                       |                           | xtraction of food<br>omponents Solvents used include methyle<br>ethyl ether, hexane, heptane a<br>They exhibit a range of toxicity,<br>volatility and present an accide<br>of VOC emissions. |                           |                                                                                                                                                                                                                                                                |            |                                                   | nd cyclohexane.<br>flammability and |                        |  |
|                               | Salt, sodiu<br>nitrite and<br>nitrate                                 | im I                  | Brining and               | d curing a                                                                                                                                                                                   | agents                    | Wash down into effluent will affect effluent qual<br>Chloride (brine) is a conservative substance an<br>therefore, not reduced through effluent treatme<br>apart from dilution.                                                                                |            |                                                   |                                     |                        |  |
|                               | Caustic                                                               |                       | Fruit and v               | -                                                                                                                                                                                            | peeling                   |                                                                                                                                                                                                                                                                |            | wastewater                                        |                                     |                        |  |
|                               | Citric acid<br>Ferrous                                                |                       | Blanching<br>Water trea   |                                                                                                                                                                                              | micale                    |                                                                                                                                                                                                                                                                |            | wastewater.<br>t use will cre                     | ato an ac                           | idic                   |  |
|                               | sulphate                                                              |                       | vvalei liea               |                                                                                                                                                                                              | Emicais                   | solution.                                                                                                                                                                                                                                                      | Inconec    |                                                   | ale an ac                           | luic                   |  |
|                               | Chlorinate<br>water                                                   | d '                   | Washing                   |                                                                                                                                                                                              |                           |                                                                                                                                                                                                                                                                |            |                                                   |                                     |                        |  |
|                               | Ammonia                                                               |                       | Refrigeran                | t                                                                                                                                                                                            |                           | watercours                                                                                                                                                                                                                                                     | se or sew  | nt in event of<br>er. Leaks fro<br>emissions to   | om refrige                          |                        |  |
|                               | Ethylene glycol and                                                   |                       | Refrigeran                | t                                                                                                                                                                                            |                           |                                                                                                                                                                                                                                                                | oxygen     | demand in e                                       |                                     | illage into            |  |
|                               | water,<br>R404 and<br>(an HCFC                                        |                       | Refrigeran                | t                                                                                                                                                                                            |                           | emissions                                                                                                                                                                                                                                                      | to air and | ation system<br>I these refrig<br>le depletion.   |                                     |                        |  |
|                               | Packaging                                                             |                       |                           |                                                                                                                                                                                              |                           | Excess wil                                                                                                                                                                                                                                                     | l require  | recycling or o                                    | disposal (                          | see                    |  |
|                               | Caustic<br>Acids (e.g.<br>nitric,<br>phosphorio<br>acids)<br>bleaches | .  1                  | Cleaning a<br>materials   | ınd saniti                                                                                                                                                                                   | isation                   | section 2.2.2.3).<br>Even in the diluted form used for cleaning purpose<br>a proportion of the chemicals will end up in the fina<br>effluent, even if much reduced by treatment.<br>Potent pollutants in the event of spillage into a<br>watercourse or sewer. |            |                                                   |                                     |                        |  |

| INTRODUC                                 | TION <b>TECHNIQU</b>                                                                    | ES EN               | VISSIONS                               | IMPACT                                                                                                                             |
|------------------------------------------|-----------------------------------------------------------------------------------------|---------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
|                                          | terials Activities/ Ground ,<br>abatement water                                         | Waste Energy        | Accidents Noise                        | e Monitoring Closure Installation issues                                                                                           |
|                                          |                                                                                         |                     |                                        |                                                                                                                                    |
| Selection of raw materials               | Application Form<br>Question 2.2 (part 1)                                               |                     | raw and auxiliary<br>ou propose to use | materials, other substances and<br>a.                                                                                              |
|                                          | With the Application the                                                                | operator sh         | ould:                                  |                                                                                                                                    |
|                                          | <ol> <li>supply a list of the materia<br/>including:</li> </ol>                         | ls used, which ha   | ave the potential for                  | significant environmental impact,                                                                                                  |
|                                          | <ul> <li>the chemical compositi</li> </ul>                                              | ion of the materia  | als where relevant:                    |                                                                                                                                    |
|                                          | <ul> <li>the quantities used,</li> </ul>                                                |                     |                                        |                                                                                                                                    |
|                                          |                                                                                         |                     |                                        | ich media and to the product),                                                                                                     |
|                                          | relevant species).                                                                      |                     |                                        | accumulation potential, toxicity to                                                                                                |
|                                          |                                                                                         | ot be limited to, a |                                        | may have a lower environmental<br>cribed in BAT Requirement 5 below                                                                |
|                                          | A suitable template is inclu                                                            | uded in the electr  | onic version of this                   | document.                                                                                                                          |
|                                          | normally adequate rather t                                                              | than listing every  | commercial alternated; ensuring that a | of those of a similar type, is<br>ative used. A common sense<br>ny material could have a significant<br>ould be available on-site. |
|                                          |                                                                                         |                     |                                        | inued use of any substance for sed raw material section is therefore                                                               |
|                                          | <ol> <li>for existing activities, ident certain substances, which</li> </ol>            |                     |                                        | n, e.g. the environmental impact of term studies to establish.                                                                     |
|                                          | Indicative BAT Requiren                                                                 | nents               |                                        |                                                                                                                                    |
| BAT for<br>selection of<br>raw materials |                                                                                         |                     |                                        | above) as an improvement<br>any case within the timescale                                                                          |
|                                          | 2. The operator should maint                                                            | tain a detailed inv | ventory of raw mate                    | rials used on-site.                                                                                                                |
|                                          | <ol> <li>The operator should have<br/>materials and the impleme</li> </ol>              |                     |                                        | i new developments in raw<br>are less hazardous.                                                                                   |
|                                          | <ol> <li>The operator should have<br/>materials.</li> </ol>                             | quality assuranc    | e procedures for th                    | e control of the content of raw                                                                                                    |
|                                          | 5. The following raw material                                                           | substitutions she   | ould be applied whe                    | ere appropriate:                                                                                                                   |
|                                          | Raw material                                                                            |                     |                                        | ction techniques                                                                                                                   |
|                                          | Organic solvents                                                                        | dio<br>ha           | oxide, for example,                    | The use of super critical carbon<br>in the caffeine extraction process<br>e of the more conventional                               |
|                                          | Cleaning and sanititisation ma<br>See section 2.3.10                                    | de<br>As            | gradation products                     | ranges of cleaning agents, for                                                                                                     |
|                                          | Caustic for fruit and vegetable<br>(see section 2.3.2.4) and clear<br>section 2.3.12.1) |                     | nly "low mercury" N                    | aOH should be used.                                                                                                                |
|                                          | Fuels                                                                                   | Se                  | ee Section 2.7.3                       |                                                                                                                                    |
|                                          | For existing installations, the ab                                                      | ove techniques      | should be program                      | ned for implementation within the                                                                                                  |

For existing installations, the above techniques should be programmed for implementation within the timescale given in Section 1.1. Any substitutions should be carried out to a timescale to be agreed with the Regulator.

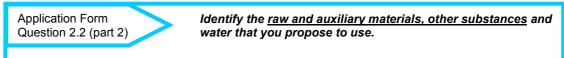
| INTRODUCTIO          |                          |                 |       |        | VISSIO    | ١S    | IMPACT     |         |                        |  |
|----------------------|--------------------------|-----------------|-------|--------|-----------|-------|------------|---------|------------------------|--|
| Management Materials | Activities/<br>abatement | Ground<br>water | Waste | Energy | Accidents | Noise | Monitoring | Closure | Installation<br>issues |  |

| Use of raw | 2.2.2 Waste minimisation (minimising the use of raw materials)                                      |
|------------|-----------------------------------------------------------------------------------------------------|
| materials  | The prevention and minimisation of waste and emissions to the environment is a general principle of |

Ine prevention and minimisation of waste and emissions to the environment is a general principle of IPPC. Operators will be expected to consider the application of waste minimisation techniques so that, wherever practicable, all types of wastes and emissions are prevented or reduced to a minimum. The steps below will also help to ensure the prudent use of natural resources.

Waste minimisation can be defined simply as:

"a systematic approach to the reduction of waste at source, by understanding and changing processes and activities to prevent and reduce waste."


A variety of techniques can be classified under the general term of waste minimisation and range from basic housekeeping techniques through statistical measurement techniques to the application of clean technologies.

In the context of waste minimisation and this Guidance, waste relates to the inefficient use of raw materials and other substances at an installation. A consequence of waste minimisation will be the reduction of gaseous, liquid and solid emissions.

Key operational features of waste minimisation will be:

- the ongoing identification and implementation of waste prevention opportunities, through for example process control measures;
- the active participation and commitment of staff at all levels, including for example, staff suggestion schemes;
- monitoring of materials usage and reporting against key performance measures.

See Ref. 6 for detailed information, guides and case studies on waste minimisation techniques.



#### With the Application the operator should:

1. identify, from a knowledge of the plant, the main opportunities for waste minimisation and supply information on waste minimisation audits and exercises and the improvements made or planned.

#### Indicative BAT Requirements

BAT for waste minimisation

**Principles** 

 A regular waste minimisation audit should be carried out. Where one has not been carried out recently, an initial comprehensive audit should be carried out within the timescale given in Section 1.1 (noting that the Regulator is likely to require it to be programmed early within the list of work to be carried out by that date). New plants are also subject to this timescale as an audit cannot be carried out until the plant has been operating for some time. Further audits should be at least as frequent as the IPPC permit reviews. The audit should be carried out as follows:

The operator should analyse the use of raw materials, assess the opportunities for reductions and provide an action plan for improvements using the following three essential steps:

- i) process mapping;
- ii) raw materials mass balance;
- iii) action plan.

The use and fate of raw materials and other materials, including intermediates, by-products, solvents and other support materials, such as cleaning agents and fuels should be mapped onto a process flow diagram (see Ref. 6) using data from the raw materials inventory (see Section 2.2.1) and other company data as appropriate. Data should be incorporated for each principal stage of the operation in order to construct a mass balance for the installation.

Using this information, opportunities for improved efficiency, changes in process and waste reduction should be generated and assessed and an action plan prepared for the implementation of waste minimisation projects.

The operator should implement any agreed techniques to a timescale agreed with the Regulator.

| INTRODU      | ICTION              | TEC                      |                 |       |        | VISSION   | ١S    | IMPACT     |         |                        |  |
|--------------|---------------------|--------------------------|-----------------|-------|--------|-----------|-------|------------|---------|------------------------|--|
| Management N | laterials<br>inputs | Activities/<br>abatement | Ground<br>water | Waste | Energy | Accidents | Noise | Monitoring | Closure | Installation<br>issues |  |

Use of raw materials

#### 2.2.2.1 Process control

Improved process control inputs, conditions, handling, storage and effluent generation will minimise waste by reducing off-specification product, spoilage, loss to drain (for example, fitting a level switch, float valve, or flow meter will eliminate waste from overflows), overfilling of vessels, water use and other losses.

Product loss or wastage is a significant benchmark for the food and drink industry and are useful guidelines for an operator to assess the performance of the installation against industry standards. Some examples of which are given below (refer to section 1.1 for an explanation of standards for new and existing installations).

| Sub-Sectors | Percentage of Raw Material Loss. | Ratios                      |
|-------------|----------------------------------|-----------------------------|
| Liquid Milk | 0.7-1% wastage                   | 0.6:1 (water:final product) |
| Soft Drinks | 1% wastage                       | 1:1 (water:final product)   |
| Brewing     | 4-6% wastage (post fermentation) | 4:1 (water:final product)   |

Selection of process techniques also has a bearing on product loss. While selection is primarily based on product requirements, it will also have implications for pollution. Operators should consider this trade off when implementing BAT. For an example see Section 2.3.2.4 Peeling.

It is important that process monitoring and control equipment selected is designed, installed and operated so that it will not interfere with hygiene conditions in the production process and itself lead to product loss and waste. Measures which should be implemented as appropriate include:

#### **Process monitoring techniques**

#### Temperature measurement

Raw material waste and effluent generation can be reduced by controlling temperatures, for example, in storage vessels, processing vessels, transfer lines etc. The benefits will be reduced deterioration of materials, reduced out-of-specification products and less contamination (for example, solid or biological). Where possible temperature sensors should be used for dual purpose, for example monitoring both product and cleaning temperature.

#### **Pressure Measurement**

Pressure sensors are typically used for the indirect control of other parameters, for example flow or level. Pressure sensors in transfer lines control pump speed, pressure and flow velocity and are used to minimise waste from material damaged by shear friction forces. Differential pressure systems are used to monitor levels in storage or processing vessels. This minimises material loss from overflow or production downtime, due to lack of stock. They can also be used to monitor pressure drop across filters to control cleaning cycles and optimise operation.

#### Level Measurement

Level detecting sensors indicate whether or not a media is present at a specific point in a vessel, whereas a level-measurement sensor monitors all levels. These sensors prevent storage overflow of materials and associated wastage from storage or reaction tanks; minimise waste from transfer losses in inaccurate batch recipes in vessels; and minimise out-of-date stock or production losses due to insufficient material. Options include:

- float valves (relatively cheap and effective, but can be easily damaged);
- mechanical indicators;
- capacitance level switches (they can also detect the interface between two different liquids and are commonly used in cleaning in place systems (CIP) to detect the water/product interface by accurately detecting the interface and minimising product loss to drain);
- vibrating level switches (typical applications include viscous sauces or mixtures, for example wet yeast in brewing);
- hydrostatic devices, (not suitable for applications where solids can build up on the diaphragm and for materials held constantly above 100 °C, as their accuracy is affected);
- ultrasonic sensors (surface foaming will affect accuracy);
- microwave devices (are similar to ultrasonic devices, but can be used in more extreme process conditions, as process temperatures, pressure or vacuum does not affect it);
- load cells (for vessels where intrusive monitoring measures may introduce a risk factor).

#### Flow Measurement

Flow measurement and control used in transfer lines will allow accurate addition of materials to processing vessels and minimise excessive use of materials and formation of out-of-specification products. In steam supplies it will help maintain correct operating temperature and minimise waste from under-heated or overheated materials and products. In cleaning systems it will control water use and optimise use and minimise effluent generation. Options include:

| INTROD     | TEC                 | TECHNIQUES               |                 |       | VISSION | ١S        | IMPACT |            |         |                        |
|------------|---------------------|--------------------------|-----------------|-------|---------|-----------|--------|------------|---------|------------------------|
| Management | Materials<br>inputs | Activities/<br>abatement | Ground<br>water | Waste | Energy  | Accidents | Noise  | Monitoring | Closure | Installation<br>issues |

# Use of raw materials

- variable area flow indicator or rotameter (only suitable for low flows and does not provide an associated control action);
- positive displacement meters;
- turbine meters (for low viscosity liquids, such as milk, beer and water, can be cleaned in situ and are relatively low cost);
- electromagnetic meters (suitable for use in hygienic applications);
- vortex shedding meters (suitable for measuring steam and low viscosity liquids and their maintenance requirements are low);
- differential pressure meters (suitable for measurement and control of relatively constant flow rates and are commonly used where high pressure and temperatures are required, for example to monitor boiler feed water);

#### Installation requirements for flow measurement

To reduce contamination, flow meters should be easy to clean and robust. In processes where fluids may solidify at low temperature, heat tracing may be required to ensure that it does not solidify in or around the equipment. To ensure that the meters read accurately, they must be positioned correctly, this will be dependent upon the type of meter and should be understood, for example rotameters should be mounted in vertical pipelines.

#### **Analytical Measurement**

To minimise wastage and to check the quality of materials the pH, conductivity and turbidity of a range of fluids should be commonly checked in-line. For example, pH sensors can be used to control additions of acid or alkali to reaction vessels and therefore minimise waste resulting from overdosing of raw materials and the production of out-of-specification product. Conductivity sensors can be used to monitor levels of dissolved salts prior to water re-use to minimise freshwater use and effluent volumes. Turbidity sensors can be used to monitor the quality of process water and CIP systems and will therefore minimise effluent from out-of-specification products/process water and optimise re-use of cleaning water respectively.

#### **Process Controllers/Transmitters**

Limit detectors or continuous transmitters are commonly used in the food and drink sector to receive data from measurement devices and/or to compare measured data to a set point and/or to transmit a signal to a control device, such as an actuated valve.

#### **Flow Control**

Globe and angle valves, needle control valves, butterfly valves and weir diaphragm valves are all used for the manual control of liquid flow rates. Examples include:

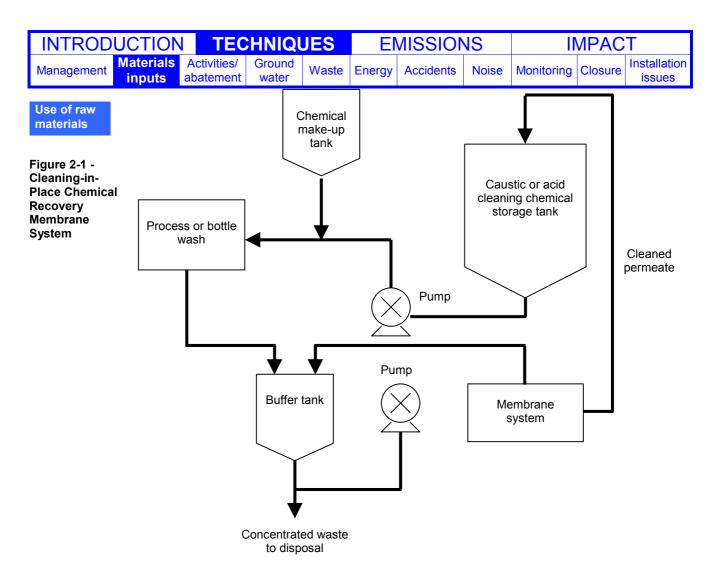
- the installation of constant flow valves, to control flow rate to water ring vacuum
- · flow regulators being installed to fix process water flow rates for specific processes

Solenoid actuated valves - are low cost control techniques used throughout the food and drink sector, particularly for the control of process water.

Pumps can be controlled by monitoring devices, for example, to control material transfer. Some monitoring devices will indicate abnormal process conditions and will sound visual and audible alarms. Rapid response to these alarms can prevent product loss and prevent wastage from occurring.

#### **Packing Line Efficiency**

Poorly designed and operated packing lines cause many companies to lose as much as 4% of their product and packaging. To improve efficiency and productivity and to reduce wastage, individual machines should be correctly specified so that they work together as part of an efficient overall design.


#### 2.2.2.2 Recycling of auxiliary chemicals

It was stated in Section 2.2.1 that a proportion of the chemicals used for cleaning purposes will end up in the final effluent, even if much reduced by treatment. This is not only a loss of a raw material, but means that more effort will be required to treat the effluent.

In addition to measures to ensure the optimal application of cleaning chemicals, techniques are becoming available to recover chemicals from, for example, Cleaning In Place (CIP) systems. Nanofiltration can be used to recover 90% of caustic or acid from spent process solutions (ref. 5). This may be suitable for large scale cleaning processes, for example:

- cleaning of evaporators in the dairy sector;
- bottle washing in breweries;
- general CIP applications.

See Figure 2-1 for a schematic representation of a CIP recovery system.



#### 2.2.2.3 Packaging

Packaging includes a number of raw materials, for example corrugated cartons, plastic bags, shrinkwrap, stretch-wrap, layer pads, pallets and slip sheets, drums and other containers and filler materials (polystyrene, foam paper) etc. IPPC addresses packaging waste associated with the production process. (The requirement to minimise the impact of packaging and packaging waste on the environment in general is regulated under the Producer Responsibility Obligations (Packaging Waste) Regulations 1997 (as amended) and the Packaging Essential Requirements Regulations 1998 (regulated by local authority trading standards officers)).

Pollution prevention with respect to waste packaging should be addressed using the waste minimisation hierarchy hence:

- firstly, avoiding packaging;
- secondly, reducing packaging;
- thirdly, re-using packaging;
- fourthly, recycling packaging.

#### **Packaging Design**

The optimum packaging size should be used, which takes account of product size, shape, weight, distribution requirements and packaging material selected. The packaging must achieve fitness of purpose, minimise the amount of packaging material used, maximise the amount of product per pallet and optimise warehouse storage. Often by designing the packaging effectively, waste can be avoided or at least reduced.

A large variety of packaging materials exist within the food and drink sector. Packaging materials should be selected that cause the least environmental impact. To keep waste to a minimum the weight and volume of each material, together with its recycled content should be considered, as should the potential for re-use, recycling and disposal of the packaging. Often one material can replace the need for another, for example recyclable shrink-wrap could replace the need cardboard trays and shrink-wrap.

| INTRO     |                     | TECHNIQUES               |                 |       | VISSIO | ٧S        | IMPACT |            |         |                        |
|-----------|---------------------|--------------------------|-----------------|-------|--------|-----------|--------|------------|---------|------------------------|
| Managemen | Materials<br>inputs | Activities/<br>abatement | Ground<br>water | Waste | Energy | Accidents | Noise  | Monitoring | Closure | Installation<br>issues |

#### Water use 2.2

### 2.2.3 Water use

The food and drink sector has traditionally been a large user of water as an ingredient, cleaning agent, means of conveyance and feed to utility systems. Large food processing installations will use several hundred cubic metres of water a day, either from mains or borehole supply. Uses include:

- washing of raw materials;
- water used for transporting (flaming) raw material or waste;
- process water;
- cleaning of plant, process lines, equipment and process areas;
- washing of product containers;
- boiler make up.

#### Reasons for reducing water use

The use of a simple Mass Balance for water use will reveal where the greatest impact can be made in reducing water use. Reducing water use may be a valid environmental (or economic) aim in itself (perhaps because of local supply constraints).

However from the point of view of reducing polluting emissions, any water passing through an industrial process is degraded by the addition of pollutants, and there are distinct benefits to be gained from reducing the water used. In particular, reducing the water reaching the water treatment plant:

- reduces the emissions load to water (this is because the pollutant load is generally reduced by treatment to a specified discharge concentration level irrespective of the concentration arriving at the treatment plant. So if the treatment plant performs to 20mg/l of BOD, halving the number of litres will halve the effluent load);
- reduces the size of (a new) treatment plant thereby supporting the cost benefit BAT justification of better treatment;
- there are cost savings where water is purchased or disposed off to another party;
- there are also likely to be associated benefits within the process such as reduction of energy
  requirements for heating and pumping, and reduced dissolution of pollutants into the water leading
  to reduced sludge generation in the effluent treatment plant.
  - For example, a leak from a water supply pipeline or hose will not only represent a wastage of water, it will also be a revenue loss since that water will have been paid for and may have been pumped within the installation environment. In addition, if the leakage was of heated water, then there will be an additional cost from the energy consumed in heating the water. For every 10°C increase in water temperature, it costs typically, 16p/m<sup>3</sup> for water heated by gas or 47p/m<sup>3</sup> for water heated by electricity. Heating costs are in addition to the typical cost of 70p/m<sup>3</sup> for mains water or over £1.00/m<sup>3</sup> for softened water.

Application Form Question 2.2 (part 3)

*Identify the uses of <u>water</u> within the installation and measures to minimise its use.* 

#### With the Application the operator should:

- 1. supply information on water consumption and comparison with any available benchmarks;
- 2. identify the water supplier and source;
- supply a diagram of the water circuits with indicative flows and water mass balances for the activities (including the boiler plant and the de-ionisation and treatment operations), see also Section 2.6;
- 4. describe the current or proposed position with regard to the techniques below, any in the existing Sector Guidance or any others which are pertinent to the installation;
- demonstrate that the proposals are BAT, by confirming compliance with the indicative requirements, by justifying departures (as described in Section 1.2 and in the Guide to Applicants) or alternative measures;
- 6. describe, in particular, any water audits already conducted and the improvements made or planned.

Cont.

| INTRODUC                    | CTION TECHNIQUES EMISSIONS IMPACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|
| Manadement                  | aterials Activities/ Ground Waste Energy Accidents Noise Monitoring Closure Installation issues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                             | nputs abatement water water issues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Water use                   | Indicative BAT Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |  |  |  |  |
| BAT for water<br>efficiency | <ol> <li>A regular review of water use (water efficiency audit) should be carried out. Where one has not been carried out recently the initial review should be carried out within the timescale given in Section 1.1. New plants are also subject to this timescale as an audit cannot be carried out until the plant has been operating for some time. Further reviews should be at least as frequent as the IPPC permit reviews. It should be carried out as follows:</li> <li>The operator should produce flow diagrams and water mass balances for the activities.</li> <li>Water efficiency objectives should be established by comparison with national benchmarks (see Ref. 9). In justifying any departures from these (see Section 1.2), or where benchmarks</li> </ol> |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                             | <ul> <li>are not available, the techniques described below should be taken into account. The constraints on reducing water use beyond a certain level should be identified by each operator, as this is usually installation-specific.</li> <li>Water pinch techniques should be used in the more complex situations, to identify the</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                             | <ul> <li>opportunities for maximising reuse and minimising use of water (see ETBPP publications, Re 7).</li> <li>Using this information, opportunities for reduction in water use should be generated and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                             | assessed and improvements proposed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                             | <ul> <li>2. The following general principles should be applied in sequence to reduce emissions to water:</li> <li>water-efficient techniques should be used at source where possible;</li> <li>water should be recycled within the process from which it issues, by treating it first if necessary. Where this is not practicable, it should be recycled to another part of the process which has a lower water quality requirement;</li> <li>in particular, uncontaminated roof and surface water, which cannot be used, should be discharged separately.</li> </ul>                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                             | 3. Measures should be implemented to minimise contamination risk of process or surface water (see Section 2.3.14).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                             | 4. To identify the scope for substituting water from recycled sources, the water quality requirements associated with each use should be identified. Less contaminated water streams, e.g. cooling waters, should be kept separate where there is scope for reuse, possibly after some form of treatment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                             | 5. Water used in cleaning and washing down (see section 2.3.10) should be minimised by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                             | <ul> <li>vacuuming, scraping or mopping in preference to hosing down;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                             | evaluating the scope for reusing wash water;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                             | <ul> <li>trigger controls on all hoses, hand lances and washing equipment.</li> <li>recycling vehicle wash water where an automatic system is in place.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                             | <ol> <li>Water use should be minimised within the BAT criteria for the prevention or reduction of<br/>emissions and commensurate with the prudent use of water as a natural resource. The<br/>constraints (for example, hygiene issues) on reducing water use beyond a certain level should be<br/>identified by each operator, as this is usually installation-specific.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                             | 7. Water efficiency objectives should be established on a mass balance approach. The consumption of the activities should comply with relevant benchmarks. In justifying any departures from these the techniques described below should be taken into account. The constraints on reducing water use beyond a certain level should be identified by each operator, as this is usually installation-specific.                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                             | The principles for reducing the use of fresh water are:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                             | monitoring the consumption for each unit process;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                             | <ul> <li>implementing measures to reduce use where appropriate, for example flow restrictions for<br/>cleaning ring mains;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                             | <ul> <li>recycling water within the process from which it issues, by treating it first if necessary. Where that is not practicable it should be recycled to another part of the process which has a lower water quality requirement. Recycling should take place in as many positions as possible for:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                             | - process feed waters,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                             | <ul> <li>conveyance waters,</li> <li>washwaters.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |  |  |  |

| INTROD                                    | UCTIO                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MISSIO                                                                                                                                                                                                         | <b>VS</b>                                                                                                                                                                                                         | IMPACT                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                               |                                                                                                              |  |  |
|-------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|--|
| Management                                | Materials<br>inputs                                                                               | Activities/<br>abatement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ground<br>water                                                                                                                                                                                                                                                | Waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Energy                                                                                                                                                                                                         | Accidents                                                                                                                                                                                                         | Noise                                                                                                                                                                                      | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Closure                                                                                                                                       | Installation<br>issues                                                                                       |  |  |
| Water use                                 |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                |                                                                                                                                                                                                                   |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                               | Cont                                                                                                         |  |  |
| BAT for<br>water<br>efficiency<br>(cont.) | 8. F<br>•<br>•                                                                                    | <ul> <li>Cleaning techniques (see section 2.3.10);</li> <li>Fresh water should only be used for: <ul> <li>process waters where water quality (e.g. pH, hardness, temperature) requirement specific products (or equipment) is a factor. Tolerance to abnormal levels should established so the lowest compatible quality can be used.</li> <li>vacuum pump sealing (note, below, that this can be much reduced or even elimities)</li> <li>to make up for evaporative losses;</li> </ul> </li> <li>Control should be simplified, if possible, to give one fresh water input point and one point from the system.</li> <li>Once-through use of cooling water should be avoided in favour of closed loop system where this is not possible the cooling water, which is generally uncontaminated, shoused).</li> <li>Measures to minimise contamination risk of process or surface water should be imp</li> </ul> |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                |                                                                                                                                                                                                                   |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                               |                                                                                                              |  |  |
|                                           | ((<br>а<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>• | (see Section<br>Pumps<br>Where used) with<br>intrangements<br>cascading since of radia<br>flexible and<br>by using me<br>(up to 50%<br>PLUS<br>filtering and<br>reduction p<br>filtering and<br>reduction p<br>filtering and<br>reduction p<br>filtering and<br>reduction p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | water-sea<br>should be<br>seal water<br>al fans or<br>d would no<br>odern des<br>reduction<br>d cooling s<br>otential),<br>d cooling s<br>otential),<br>d cooling s<br>otential),<br>d cooling s<br>otential),<br>ne hot sea<br>ing waters<br>are<br>waters ar | led vacuu<br>reviewed<br>r through<br>centrifuga<br>ot necessa<br>signs with<br>);<br>seal water<br>or<br>seal sea<br>seal sea<br>sea<br>seal sea<br>sea<br>sea<br>sea<br>sea<br>sea<br>sea<br>sea<br>sea<br>sea | Im pump<br>by cons<br>high to lo<br>al blowers<br>arily be B<br>improved<br>r with a h<br>r with a c<br>r with a c<br>r with inje<br>r cleaning<br>be separa<br>er some<br>used, the<br>als are p<br>id the ma | s can accour<br>idering impro-<br>ow pressure<br>s (100% redu-<br>AT;<br>d internal red<br>eat exchang<br>ooling tower<br>ected fresh w<br>g.<br>ated from cor<br>form of treat<br>y should not<br>referred to sa | nt for a co<br>ovements<br>pumps;<br>uction pot<br>circulation<br>er prior to<br>prior to ro<br>vater prior<br>tater prior<br>ntaminate<br>ment, e.g<br>be combi<br>eal water<br>lower. In | onsiderable v<br>s such as:<br>ential) - how<br>n of water wit<br>o re-use in the<br>e-use in the<br>r to re-use in<br>the<br>r to re-use in<br>the<br>suse in the<br>r to re-use in<br>the<br>suse in the<br>r to re-use in<br>the<br>r to re-use in<br>the<br>r to re-use in<br>the<br>r to re-use in<br>the<br>suse in the<br>r to re-use in<br>the<br>suse in the<br>suse in the<br>r to re-use in the<br>r to re-use in the<br>r to re-use in<br>the<br>r to re-use in the<br>r to re-use in<br>the suse in<br>the suse in the<br>suse in the<br>suse in the suse in<br>the suse in the<br>r to re-use in the<br>suse in the<br>suse in the suse in the suse in the suse in the<br>suse in the suse in the suse in the suse in the suse in the<br>suse in the suse in the suse in the suse in the suse in the<br>suse in the suse in the s | vater use<br>ever thes<br>thin the pu<br>he pumps<br>pumps (9<br>the pump<br>aters and<br>and scree<br>ntaminate<br>hey are w<br>re this is r | and<br>e are not so<br>ump casing<br>(90%<br>5%<br>0s (65%<br>re-used<br>ning.<br>d<br>idely<br>not feasible |  |  |
|                                           | c<br>10. F<br>C<br>ta                                                                             | ontrolled.<br>Recycling prin<br>Opportunities f<br>aking into con-<br>nclude a comb<br>sequential<br>disposal);<br>- for exar<br>so that<br>a 4-stag<br>recycling w<br>- for exar<br>quality)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nciples<br>for the rec<br>sideration<br>bination of<br>re-use (wa<br>mple, count<br>the final p<br>ge counte<br>rithin a uni<br>mple conc<br>and conta                                                                                                         | ycling or i<br>hygiene<br>f:<br>ater strea<br>nter-flow i<br>product on<br>r-flow at a<br>it process<br>lensate sh<br>aminated<br>g.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | re-use of<br>issues ar<br>m used f<br>re-use, in<br>ly comes<br>pea can<br>or group<br>nould be                                                                                                                | water should<br>and practical of<br>or two or mo<br>which the w<br>into contact<br>inery).<br>o of processe<br>returned as                                                                                        | d be iden<br>constraint<br>re proces<br>vater flows<br>with fres<br>s without<br>boiler fee                                                                                                | tified and the<br>is. An optima<br>sses or opera<br>s counter-cu<br>sh water (see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | proughly e<br>al scheme<br>ations before<br>rrent to th<br>Figure 2-<br>re it is of s                                                         | evaluated,<br>e is likely to<br>ore<br>e product<br>-2) showing<br>suitable                                  |  |  |
|                                           |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                |                                                                                                                                                                                                                   |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                               | COIII.                                                                                                       |  |  |

| INTROD     |                     |                          |                 | JES   | EMISSIONS |           |       | IMPACT     |         |                        |
|------------|---------------------|--------------------------|-----------------|-------|-----------|-----------|-------|------------|---------|------------------------|
| Management | Materials<br>inputs | Activities/<br>abatement | Ground<br>water | Waste | Energy    | Accidents | Noise | Monitoring | Closure | Installation<br>issues |

#### Water use

BAT for water efficiency (cont.)

#### 11. Recycling of ETP effluent

In many applications the best conventional effluent treatment produces a good water quality (see Section 2.2.2.1) which may be usable in the process directly or in a mixture, with fresh water. While treated effluent quality can vary it can be recycled selectively, when the quality is adequate, reverting to discharge when the quality falls below that which the system can tolerate. The operator should confirm the positions in which treated water from the ETP is, or is planned to be, used and justify where it is not.

#### 12. Tertiary treatment

Potable water can be generated by removing the solubles with membrane technology (in line biological treatment or evaporation techniques could also be used).

These are well established techniques in other industries and are used in a number of food and drink installations as process steps to recover by products.

#### EXAMPLE

The use of membrane technology in whey processing enables the valuable by-products, whey protein concentrate and lactose concentrate, to be produced. If it includes a reverse osmosis stage, demineralised water suitable for use as boiler feedwater or membrane CIP is produced. (Ref. 7)

Whist membrane techniques are applied in the Food and Drink sector (see section 2.3.9.4), with one or two exceptions, their widespread implementation to enable water recycling has not taken place. It is accepted that there are several inhibitors to wider application, for example, consumer perception, hygiene requirements and quality considerations (notably in brewing), however there is no technical reason why the use of membrane processes to recycle water should be not be an option (see Figure 2-10 - Dairy MBR).

Targeted application of membrane systems can implement the recycling principles expressed above. The small "footprint" of such systems can be utilised at specific unit process level to recycle process waters. This can minimise contamination from other sources which may rule out reuse and can be used on unit processes which have been identified as significant contributors to the volume and or strength of the effluent.

The cost of membrane technology continues to reduce and these technologies can be applied at the unit process or to the final effluent from the ETP. They can, ultimately, be a complete replacement for the ETP, leading to much reduced effluent volume, and if combined with evaporation using waste heat, lead to potentially effluent free systems. It is not anticipated that there will be effluent-free installations, although it may be possible to implement closure to specific sectors unit processes and the operator should assess the costs and benefits of providing tertiary treatment systems.

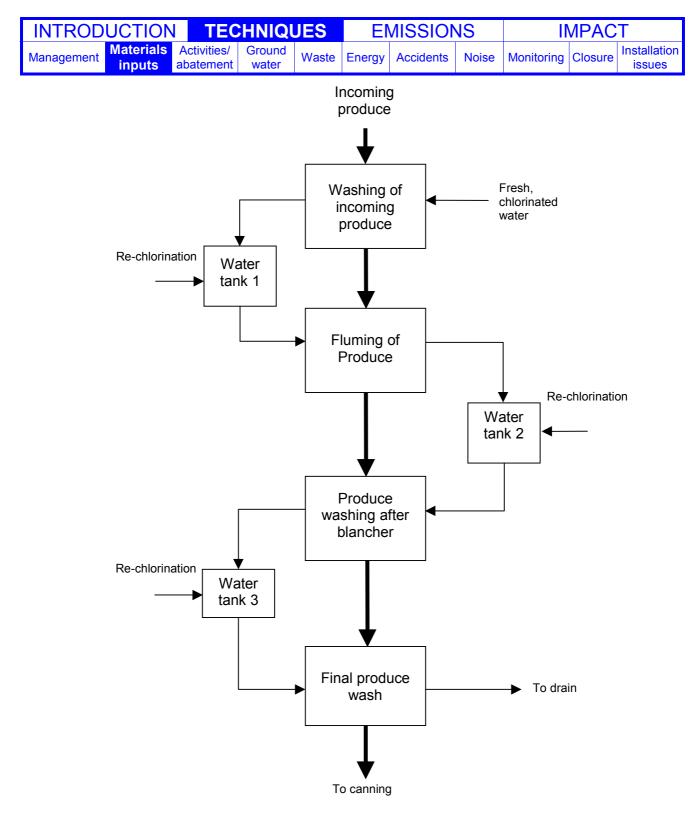



Figure 2-2 - Example of Four-Stage Counterflow System based on Pea Cannery

| INTRODUCTION |                     |                          | <b>TECHNIQUES</b> |       |        | MISSIO    |       | IMPACT     |         |                        |
|--------------|---------------------|--------------------------|-------------------|-------|--------|-----------|-------|------------|---------|------------------------|
| Management   | Materials<br>inputs | Activities/<br>abatement | Ground<br>water   | Waste | Energy | Accidents | Noise | Monitoring | Closure | Installation<br>issues |

# 2.3 The Main Activities and Abatement

(includes "directly associated activities" in accordance with the PPC Regulations)



| INTRODUC                  |                                      | TEC                                 | HNIQU                                  | IES                                       | EI                                      | MISSIO                                        | NS                     |                                                                    | MPAC                   | Т                          |
|---------------------------|--------------------------------------|-------------------------------------|----------------------------------------|-------------------------------------------|-----------------------------------------|-----------------------------------------------|------------------------|--------------------------------------------------------------------|------------------------|----------------------------|
| Management                |                                      | ivities/<br>tement                  | Ground<br>water                        | Waste                                     | Energy                                  | Accidents                                     | Noise                  | Monitoring                                                         | Closure                | Installation<br>issues     |
| Materials<br>handling     |                                      | andling ap                          | plies to the                           | •                                         | - T                                     | <b>ing, stor</b><br>and internal              | -                      | ng of raw ma                                                       | aterials, ir           | ntermediate                |
| Summary of the activities | containers.<br>materials ar          | They are<br>nd powder<br>silos. Sol | transporte<br>s are most<br>id raw mat | ed with for<br>tly deliver<br>terials car | rklift truck<br>red in bul<br>n be conv | ks, and store<br>lk trucks. Th<br>veyed by wa | ed in a st<br>hese are | holds for liques<br>tore. Larger<br>off-loaded d<br>etables, roots | amounts<br>irectly for | of solid raw<br>processing |
|                           | Mechan                               | systems (o<br>iical syster          | direct flow<br>ns (belts, s            | screw cor                                 | nveyors o                               | or buckets);<br>sure system                   | s);                    |                                                                    |                        |                            |
|                           | Liquid raw r                         |                                     |                                        |                                           |                                         |                                               |                        | umped into s<br>es extensive,                                      |                        |                            |
| Environmental<br>impact   | Water:                               | in the rele<br>(both org            | ease of su                             | spended<br>or inorgan                     | solids (b<br>iic) are re                | oth organic                                   | and/or in              | Effluent from<br>organic) and<br>ich leads to a                    | soluble                | compounds                  |
|                           | Air:                                 |                                     |                                        |                                           |                                         | s whilst filling ate from cor                 | •                      | could consis<br>ystems.                                            | t of partic            | culates,                   |
|                           | Land:                                | Depositio                           | n from em                              | nissions to                               | o air and                               | contaminati                                   | on from                | leaking pipe                                                       | work.                  |                            |
|                           | Waste:                               |                                     | from vess<br>ed where                  |                                           | other ma                                | terial handliı                                | ng equip               | ment. Rewo                                                         | rked for s             | sale as                    |
|                           | Energy:                              | Materials                           | handling i                             | is almost                                 | exclusive                               | ely electrical                                | lly driven             | ۱.                                                                 |                        |                            |
|                           | Accidents:                           |                                     |                                        |                                           |                                         | tems or clea<br>Overfilling of                |                        | ivities or trans<br>vessels.                                       | sfer of m              | aterials, for              |
|                           | Noise:                               | certain                             |                                        | ehicle-mo                                 | ounted b                                |                                               |                        | ut there migh<br>large solids a                                    |                        |                            |
|                           | Applicatior<br>Question 2            |                                     | $\ge$                                  | Material                                  | ls Handli                               | ng, Unpacki                                   | ng and S               | Storage                                                            |                        |                            |
|                           |                                      |                                     |                                        |                                           |                                         |                                               | 2.3 listed             | d on page 25                                                       | i for this a           | aspect of                  |
| BAT for                   | Indicativ                            | e BAT R                             | equiren                                | nents                                     |                                         |                                               |                        |                                                                    |                        |                            |
| materials<br>handling     |                                      | ain contro                          |                                        |                                           | on 0.0 1                                | <b>、</b>                                      |                        |                                                                    |                        |                            |
| -                         |                                      | eaning tech<br>remissions           | -                                      |                                           |                                         |                                               |                        |                                                                    |                        |                            |
|                           |                                      |                                     |                                        | -                                         |                                         | age silos - <mark>s</mark>                    | ee Sectio              | on 2.8.                                                            |                        |                            |
|                           | 2. No further issues are identified. |                                     |                                        |                                           |                                         |                                               |                        |                                                                    |                        |                            |
|                           | - 1911                               | ~                                   |                                        |                                           |                                         |                                               |                        |                                                                    |                        |                            |
|                           |                                      |                                     |                                        |                                           |                                         |                                               |                        |                                                                    |                        |                            |

|                                      | NTRODUCTION TECHNIQUES EMISSIONS IMPACT                |                                                                         |                                                                        |                                                                    |                                                                   |                                                                       |                                                  |                                                                                                     |                                                              |                                           |  |  |  |
|--------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------|--|--|--|
| Ma                                   |                                                        | tivities/                                                               | Ground                                                                 |                                                                    |                                                                   |                                                                       |                                                  |                                                                                                     |                                                              | Installation                              |  |  |  |
| Wanagement                           |                                                        | tement                                                                  | water                                                                  | Waste                                                              | Energy                                                            | Accidents                                                             | Noise                                            | Monitoring                                                                                          | Closure                                                      | issues                                    |  |  |  |
| Feedstock<br>cleaning                | 2.3.2                                                  | Raw ma                                                                  | aterial p                                                              | orepara                                                            | ation                                                             |                                                                       |                                                  |                                                                                                     |                                                              |                                           |  |  |  |
|                                      | 2.3.2.1                                                | Feedst                                                                  | ock clear                                                              | ning (wa                                                           | shing a                                                           | nd soakir                                                             | ng)                                              |                                                                                                     |                                                              |                                           |  |  |  |
| Summary of the activities            | order to rea<br>Contamina                              | ach that (th<br>ints can be<br>i step to ro                             | ne surface<br>soil, micro<br>ot crops, p                               | of) the fo<br>o-organis                                            | od is in a<br>m, pestic                                           | i suitable co<br>ide residue                                          | ondition for<br>s, etc. W                        | aterials (dirt)<br>or further pro<br>/ashing is wi<br>ng is predom                                  | cessing.<br>dely appl                                        | ied as a first                            |  |  |  |
|                                      | vegetables<br>2.3.10) ma<br>recirculatio<br>mainly con | , which ha<br>y be emplo<br>on or re-use<br>tains field                 | ve a large<br>byed to aid<br>of water<br>debris and                    | surface a<br>l soil rem<br>from othe<br>soil parti                 | area. Me<br>oval and<br>er operation<br>icles with                | chanical or<br>reduce the<br>ons is comr<br>small fragn               | air flotati<br>quantity<br>non. Wa<br>nents of t | which carry a<br>on technique<br>of water use<br>istewater from<br>the fruit or ve<br>to the COD    | es ( <mark>also s</mark><br>d. Some<br>m pre-wa<br>egetable. | degree of<br>shing<br>If                  |  |  |  |
|                                      | Washing is<br>the aid of b<br>warm wate<br>microbiolog | s carried ou<br>orushes or<br>er is used.<br>gical spoila<br>oosened, u | ut by vigoro<br>by shaking<br>However,<br>age, unless<br>usually diffe | ous spray<br>g and stirr<br>the use c<br>s careful c<br>ers so gre | ring with v<br>ring. Sor<br>of warm c<br>control or<br>eatly from | water (some<br>netimes sur<br>leaning wat<br>the washir<br>the produc | etimes ch<br>face acti<br>ter may a<br>ng time a | the material f<br>nlorinated) ar<br>ve agents ar<br>iccelerate ch<br>nd process is<br>a actual sepa | nd immer<br>e added.<br>emical ar<br>s carried               | sion, with<br>Sometimes<br>nd<br>out. The |  |  |  |
|                                      |                                                        | s and with                                                              | length and                                                             | d conditio                                                         | ons of sto                                                        | rage. Tradi                                                           | itionally,                                       | e soaking tim<br>dry beans ar<br>n.                                                                 |                                                              |                                           |  |  |  |
| Environmental                        | Air:                                                   | Odour fro                                                               | om hot wa                                                              | ter washe                                                          | es.                                                               |                                                                       |                                                  |                                                                                                     |                                                              |                                           |  |  |  |
| impact                               | Water:                                                 | For wash                                                                | ning and so                                                            | baking of                                                          | ten large                                                         |                                                                       |                                                  | e required ar spended soli                                                                          |                                                              |                                           |  |  |  |
|                                      | Land:                                                  | No direc                                                                | t impacts.                                                             |                                                                    |                                                                   |                                                                       |                                                  |                                                                                                     |                                                              |                                           |  |  |  |
|                                      | Waste:                                                 | etc.). Fr                                                               |                                                                        | ig of suga                                                         | ar beets a                                                        | and potatoe                                                           |                                                  | olid nature (s<br>erable amour                                                                      |                                                              |                                           |  |  |  |
|                                      | Energy:                                                | Heat req                                                                | uired for w                                                            | varm was                                                           | hing.                                                             |                                                                       |                                                  |                                                                                                     |                                                              |                                           |  |  |  |
|                                      | Accidents                                              | : Spillage                                                              | of wash w                                                              | aters. Ov                                                          | verloading                                                        | g of effluent                                                         | t systems                                        | S.                                                                                                  |                                                              |                                           |  |  |  |
|                                      | Noise:                                                 | Not appl                                                                | icable.                                                                |                                                                    |                                                                   |                                                                       |                                                  |                                                                                                     |                                                              |                                           |  |  |  |
|                                      | Applicatio<br>Question                                 | n Form<br>2.3 (cont.)                                                   | $\geq$                                                                 | Wet Fe                                                             | edstock (                                                         | Cleaning                                                              |                                                  |                                                                                                     |                                                              |                                           |  |  |  |
|                                      | With the                                               | Applica                                                                 | ntion the                                                              | opera                                                              | tor sho                                                           | uld:                                                                  |                                                  |                                                                                                     |                                                              |                                           |  |  |  |
|                                      |                                                        | y the gene<br>ctivities;                                                | eral Applica                                                           | ation requ                                                         | irements                                                          | for Section                                                           | 2.3 liste                                        | d on page 28                                                                                        | o for this                                                   | aspect of                                 |  |  |  |
|                                      | Indicativ                                              | ve BAT F                                                                | Requirer                                                               | nents                                                              |                                                                   |                                                                       |                                                  |                                                                                                     |                                                              |                                           |  |  |  |
| BAT for wet<br>feedstock<br>cleaning | water                                                  | consumpt                                                                | ion can be                                                             | e reduced                                                          | by worki                                                          |                                                                       | er-currer                                        | are being us<br>at or by recyc<br>2.2.2).                                                           |                                                              |                                           |  |  |  |
|                                      | 2. The c                                               | other main                                                              | control iss                                                            | ues are:                                                           |                                                                   |                                                                       |                                                  |                                                                                                     |                                                              |                                           |  |  |  |
|                                      | • Ef                                                   | ffluent trea                                                            | tment - <mark>se</mark>                                                | e Section                                                          | 2.3.11.3                                                          |                                                                       |                                                  |                                                                                                     |                                                              |                                           |  |  |  |
|                                      |                                                        | dour - <mark>see</mark>                                                 |                                                                        |                                                                    |                                                                   |                                                                       |                                                  |                                                                                                     |                                                              |                                           |  |  |  |
|                                      |                                                        | ccidents - s                                                            |                                                                        |                                                                    |                                                                   |                                                                       |                                                  |                                                                                                     |                                                              |                                           |  |  |  |
|                                      | 3. No fu                                               | rther issue                                                             | s are iden                                                             | tified.                                                            |                                                                   |                                                                       |                                                  |                                                                                                     |                                                              |                                           |  |  |  |

| INTRODUC                  |                                                                                                                                                                                                          | ECHNIQ                                                 | JES        | EI       | MISSIO      | NS        | I            | IMPACT       |                        |  |  |  |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------|----------|-------------|-----------|--------------|--------------|------------------------|--|--|--|
| Wanadement                | terials Activition puts abatem                                                                                                                                                                           |                                                        | Waste      | Energy   | Accidents   | Noise     | Monitoring   | Closure      | Installation<br>issues |  |  |  |
| Dry cleaning              | 2.3.2.2 Dr                                                                                                                                                                                               | / cleaning                                             |            |          |             |           |              |              |                        |  |  |  |
| Summary of the activities | Dry cleaning pr<br>example grains<br>• air classifier<br>• magnetic se<br>• sieving and                                                                                                                  | and nuts. The<br>s;<br>parators;                       |            |          |             |           |              |              | trength, for           |  |  |  |
| Environmental<br>impact   | Air:Dust from air classifiers and screens.Water:Cleaning of screens.Land:Deposition of emissions to air.Waste:Rejected material.Energy:Required for air flow.Accidents:Not applicable.Noise:Significant. |                                                        |            |          |             |           |              |              |                        |  |  |  |
|                           | Application Fo<br>Question 2.3 (                                                                                                                                                                         |                                                        | Dry Cle    | aning    |             |           |              |              |                        |  |  |  |
|                           | With the Ap                                                                                                                                                                                              | olication the                                          | e opera    | tor sho  | uld:        |           |              |              |                        |  |  |  |
|                           | 1. supply the the activiti                                                                                                                                                                               | general Applica                                        | ation requ | irements | for Section | 2.3 liste | d on page 28 | 5 for this a | aspect of              |  |  |  |
|                           | Indicative B                                                                                                                                                                                             | AT Require                                             | ments      |          |             |           |              |              |                        |  |  |  |
| BAT for dry<br>cleaning   | <ul> <li>Emissi</li> </ul>                                                                                                                                                                               | control issues a<br>ons to air - see<br>see Section 2. | Section 2  | .3.11.   |             |           |              |              |                        |  |  |  |
|                           | 2. No further                                                                                                                                                                                            | issues are iden                                        | tified.    |          |             |           |              |              |                        |  |  |  |

| INTRODUC                | CTION                                                               | TEC                                                                      | HNIQU                                                                          | IES                                                           | F                                                                   | MISSIC                                                                                                   | NS                                                             |                                                                       | IMPAC                                                                    | т                                                       |
|-------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------|
| Ma                      |                                                                     | tivities/                                                                | Ground                                                                         |                                                               |                                                                     |                                                                                                          |                                                                |                                                                       |                                                                          | Installation                                            |
|                         |                                                                     | atement                                                                  | water                                                                          | Waste                                                         | Energy                                                              | Accidents                                                                                                | Noise                                                          | Monitoring                                                            | g Closure                                                                | issues                                                  |
| Sorting etc.            | 2.3.2.3                                                             | Sorting                                                                  | , screeni                                                                      | ing, gra                                                      | ding an                                                             | d trimmin                                                                                                | g                                                              |                                                                       |                                                                          |                                                         |
|                         |                                                                     |                                                                          |                                                                                |                                                               |                                                                     |                                                                                                          |                                                                |                                                                       |                                                                          | ave variable                                            |
| Summary of the          |                                                                     |                                                                          |                                                                                |                                                               |                                                                     | ike sorting,<br>raw materi                                                                               |                                                                |                                                                       |                                                                          |                                                         |
| activities              | processing<br>but also fo                                           |                                                                          |                                                                                |                                                               | is a first s                                                        | step in proc                                                                                             | essing of                                                      | fruits and v                                                          | /egetables                                                               | (legumes),                                              |
|                         | Sorting an weight, ima                                              |                                                                          |                                                                                | separatic                                                     | n of raw                                                            | materials ir                                                                                             | nto catego                                                     | ories on the                                                          | basis of s                                                               | hape, size,                                             |
|                         | sieving and<br>Large diffe                                          | d screening<br>rences in s<br>creens and                                 | iSize soi<br>ize would<br>sieves, wi                                           | rting is in<br>cause ov<br>th fixed o                         | portant f<br>er-proce                                               | ore fractions<br>for food piece<br>ssing or un<br>e apertures                                            | ces, whicł<br>der-proce                                        | n have to b<br>ssing. For                                             | e heated o<br>size sortir                                                | ng various                                              |
|                         | Shape sor                                                           | ting is acco                                                             | mplished                                                                       | manually                                                      | or mech                                                             | anically (for                                                                                            | r example                                                      | with a belt                                                           | -and-rolle                                                               | sorter).                                                |
|                         | Weight sor<br>eggs, tropi                                           |                                                                          |                                                                                |                                                               | d and is t                                                          | herefore us                                                                                              | ed for mo                                                      | re valuable                                                           | e foods (cu                                                              | t meats,                                                |
|                         | orientation<br>processed<br>the produc<br>group with                | of food on<br>by a micro<br>t. The proo<br>similar cha                   | a conveyo<br>processor<br>duct is eith<br>tracteristic                         | or. The in<br>. The inf<br>ner rejecto<br>s. Image            | mages of<br>ormation<br>ed (blast<br>e sorting                      | the surface<br>is compare<br>away with o                                                                 | e are reco<br>ed with pro<br>compress<br>example o             | rded by a v<br>e-programr<br>ed air) or c<br>on a large s             | video camo<br>ned specif<br>an be mov                                    | ications of                                             |
|                         | detectors t                                                         | he reflected<br>blasting w                                               | d colour of                                                                    | f each pie<br>essed air                                       | ece is cor<br>. Typical                                             | microproce<br>mpared with<br>applicatior                                                                 | n pre-set s                                                    | standards.                                                            | Defective                                                                |                                                         |
|                         | overall qua<br>examined<br>include che<br>used. Gra<br>of skilled p | ality of a foo<br>by inspecto<br>eese and te<br>ding is mor<br>ersonnel. | od. Gradir<br>ors for dise<br>ea. In som<br>e expensi <sup>,</sup><br>However, | ng is mos<br>ease, fat o<br>ne cases<br>ve than s<br>many cha | tly carrie<br>distributic<br>for gradii<br>orting (lo<br>aracterist | haracteristic<br>d out by tra<br>on, carcass<br>ng of foods<br>oking at on<br>tics cannot<br>s simultane | ined oper<br>size and<br>the result<br>ly one cha<br>be examin | ators. Mea<br>shape. Oth<br>s of labora<br>aracteristic<br>ned automa | ats, for exa<br>ner graded<br>tory analys<br>) due to th<br>atically. Tr | mple, are<br>foods<br>ses are<br>e high costs<br>rained |
|                         |                                                                     |                                                                          |                                                                                |                                                               |                                                                     | nd parts wit<br>ally or by ro                                                                            |                                                                |                                                                       | to a size fe                                                             | easible for                                             |
| <b>F</b>                | Air:                                                                | Odour ar                                                                 | d dust from                                                                    | m screen                                                      | ing.                                                                |                                                                                                          |                                                                |                                                                       |                                                                          |                                                         |
| Environmental<br>impact | Water:                                                              |                                                                          | of equipm                                                                      |                                                               | -                                                                   |                                                                                                          |                                                                |                                                                       |                                                                          |                                                         |
| •                       | Land:                                                               | Indirect e                                                               | ffects fron                                                                    | n wastes                                                      | seen as                                                             | suitable for                                                                                             | landspre                                                       | ading.                                                                |                                                                          |                                                         |
|                         | Waste:                                                              |                                                                          |                                                                                |                                                               |                                                                     | noved is rec<br>sent for dis                                                                             |                                                                | s far as pos                                                          | sible and                                                                | often used                                              |
|                         | Energy:                                                             | Mainly el                                                                | ectrical.                                                                      |                                                               |                                                                     |                                                                                                          |                                                                |                                                                       |                                                                          |                                                         |
|                         | Accidents                                                           | : Not appli                                                              | cable.                                                                         |                                                               |                                                                     |                                                                                                          |                                                                |                                                                       |                                                                          |                                                         |
|                         | Noise:                                                              | Some ma                                                                  | achinery n                                                                     | oise with                                                     | in the im                                                           | mediate pro                                                                                              | cess area                                                      | а.                                                                    |                                                                          |                                                         |
|                         | Applicatic<br>Question                                              | n Form<br>2.3 (cont.)                                                    | $\ge$                                                                          | Sorting                                                       | , Screeni                                                           | ng, Grading                                                                                              | g and Trin                                                     | nming                                                                 |                                                                          |                                                         |
|                         | With the                                                            | Applica                                                                  | tion the                                                                       | opera                                                         | tor sho                                                             | uld:                                                                                                     |                                                                |                                                                       |                                                                          |                                                         |
|                         | 1. suppl                                                            | y the gene                                                               |                                                                                | -                                                             |                                                                     | for Sectior                                                                                              | n 2.3 listeo                                                   | d on page 2                                                           | 25 for this                                                              | aspect of                                               |
| BAT for                 |                                                                     | ctivities;                                                               |                                                                                |                                                               |                                                                     |                                                                                                          |                                                                |                                                                       |                                                                          |                                                         |
| sorting etc.            | Indicativ                                                           |                                                                          |                                                                                |                                                               |                                                                     |                                                                                                          |                                                                |                                                                       |                                                                          |                                                         |
|                         |                                                                     | nain contro<br>leaning tec                                               |                                                                                |                                                               | ion 2 2 4                                                           | 0                                                                                                        |                                                                |                                                                       |                                                                          |                                                         |
|                         |                                                                     | leaning tec<br>ir emission:                                              | -                                                                              |                                                               |                                                                     |                                                                                                          |                                                                |                                                                       |                                                                          |                                                         |
|                         | •                                                                   | rther issue                                                              |                                                                                | -                                                             |                                                                     |                                                                                                          |                                                                |                                                                       |                                                                          |                                                         |
|                         |                                                                     |                                                                          |                                                                                |                                                               |                                                                     |                                                                                                          |                                                                |                                                                       |                                                                          |                                                         |

|            |                     | N TEC                    |                 |       |        | VISSIO    | NS    | IMPACT     |         |                        |  |
|------------|---------------------|--------------------------|-----------------|-------|--------|-----------|-------|------------|---------|------------------------|--|
| Management | Materials<br>inputs | Activities/<br>abatement | Ground<br>water | Waste | Energy | Accidents | Noise | Monitoring | Closure | Installation<br>issues |  |

#### Peeling 2.3.2.4 Peeling

Summary of the activities

Many vegetables and some fruits require peeling, which can be a major source of BOD and TSS and represent a substantial proportion of the total wastewater volume. Peeling can be achieved by mechanical cutting or abrasion; or by the application of steam, hot water or heated air. Caustic soda is often used to soften the cortex so that the peel can be more easily removed by mechanical scrubbers or high pressure water sprays (which also removes any residual caustic).

Conventional steam or hot water peeling uses large quantities of water (up to x4 that required for caustic peeling) and produces wastewater with high levels of product residue. At potato processing installations, the peels can contribute up to 80% of the total BOD. In fruit processing, peeling wastewater can account for as much as 10% of the total wastewater flow and 60% of the BOD. Dry caustic peeling methods can greatly reduce the volume and strength of the wastewater from this operation and allow for the collection of peel as a pumpable slurry.

The use of caustic in peeling may lead to pH fluctuations in the wastewater. Some produce (e.g. tomatoes) requires strong caustic solutions and the addition of wetting agents. Dry caustic peeling tends to have a lower caustic consumption than wet methods.

Flash steam peeling is a batch-wise process. The raw materials (roots, tubers) are treated in a pressure vessel and exposed to high-pressure steam (1500 to 2000 kPa). The high temperature causes a rapid heating and cooking of the surface layer (within 15 to 30 sec.). The pressure is then instantly released, which causes flashing off of the cooked skin. Most of the peeled material is discharged with the steam (this results in the collection of a concentrated waste stream). Remaining traces are sprayed off with water. The process has a lower water consumption than other "wet" peeling methods.

In knife peeling, the materials to be peeled (fruits or vegetables) are pressed against stationary (material to be peeled is rotating) or rotating blades to remove the skin. Knife peeling is particularly used for citrus fruits where the skin is easily removed and little damage of the fruits is caused.

In abrasion peeling, the material to be peeled is fed onto carborundum rollers or fed into a rotating bowl, which is lined with carborundum. The abrasive carborundum surface removes the skin, which is then washed away with water. The process is carried out normally at ambient temperature. This has a significantly higher product loss than flash steam peeling (25% loss compared to 8-15% loss) and considerably more liquid effluent.

Caustic peeling involves the material to be peeled being passed through a dilute solution (1 to 2%) of sodium hydroxide. Due to this treatment the skin is softened and can be sprayed off by high-pressure water sprays. Product loss is around 17%. A new development in caustic peeling is so-called dry caustic peeling. The material is dipped in a 10% sodium hydroxide solution. The softened skin is then removed by rubber discs or rollers. This reduces water consumption and produces a concentrated caustic paste for disposal.

Developed for onions, a flame peeler consists of a conveyer belt which transports and rotates the material through a furnace heated to temperatures above 1000 °C. The skin (paper shell, root hairs) is burned off. The skin is removed by high-pressure water sprays.

*Air:* VOC, dust and odour from steam and flame peeling.

Environmental impact

- *Water:* Treatment of high pH effluent from caustic. Most peeling operations use water for spraying off the peeled skin, which carries food remnants into the waste water stream.
- Land: No direct impacts.
- Waste: Food remnants removed by screens from waste water.
- *Energy:* Flash steam peeling, caustic peeling and flame peeling requires heat. In the other peeling operations electrical energy is used.

Accidents: Spillage of caustic.

Not applicable.

| INTRODU                       |                                                                    | V TEC                                                                                                                                                                                                                                       | HNIQL                                                                                                                      | JES                                                                                  | El                                                                              | VISSIO                                                           | NS        | I           | MPAC         | T                      |
|-------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------|-----------|-------------|--------------|------------------------|
| Management                    | aterials<br>nputs                                                  | Activities/<br>abatement                                                                                                                                                                                                                    | Ground<br>water                                                                                                            | Waste                                                                                | Energy                                                                          | Accidents                                                        | Noise     | Monitoring  | Closure      | Installation<br>issues |
| Peeling<br>BAT for<br>peeling | Applia<br>Ques<br>With<br>1. sr<br>th<br>Indica<br>1. T<br>te<br>• | the Application Form<br>stion 2.3 (cont.)<br>the Application<br>upply the gene<br>he activities;<br>the operator sh<br>echniques, the<br>Water and e<br>Product loss<br>Other control iss<br>Emissions to<br>Cleaning teo<br>Effluent treat | ation the<br>ral Applica<br>Requirem<br>ould show<br>selection h<br>nergy effic<br>sues are:<br>o air (odour<br>chniques - | tion requ<br>nents<br>that for a<br>has taken<br>iency - se<br>r and VO<br>see Secti | tor sho<br>irements<br>a specific<br>into cons<br>ee Sectio<br>C)<br>ion 2.3.10 | uld:<br>for Section<br>feedstock v<br>sideration:<br>ns 2.2.3 an | 2.3 liste | d on page 2 | 5 for this a | aspect of              |
|                               | 3. N                                                               | lo further issue                                                                                                                                                                                                                            |                                                                                                                            |                                                                                      |                                                                                 |                                                                  |           |             |              |                        |

| INTRODU                   | ICTION                                     | TECI                                                                                                                   | HNIQU                                                  | JES                                                | E                                                | MISSIO                                                       | NS                                               |                                                              | MPAC                               | Т                                      |
|---------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------|------------------------------------|----------------------------------------|
| Wanadement                |                                            | Activities/<br>abatement                                                                                               | Ground<br>water                                        | Waste                                              | Energy                                           | Accidents                                                    | Noise                                            | Monitoring                                                   | Closure                            | Installation<br>issues                 |
| Grinding<br>and milling   | <b>2.3.3</b><br>2.3.3.1                    |                                                                                                                        | luction<br>g and mi                                    | illing                                             |                                                  |                                                              |                                                  |                                                              |                                    |                                        |
| Summary of the activities | materia<br>dairy in<br>availab<br>(milling | ng (milling) is a<br>als are process<br>idustry (milk po<br>le for application<br>) smaller partico<br>cation, which a | ed, for exa<br>wder, lact<br>on to spec<br>le sizes ca | ample the<br>ose), etc<br>ific types<br>an be atta | e feed ind<br>A range<br>of food fo<br>ained. Di | lustry, flour<br>e of grinding<br>or both dry<br>ry grinding | milling ir<br>g (milling<br>and wet<br>(milling) | ndustry, brew<br>) techniques<br>applications<br>is combined | veries, su<br>and equi<br>In wet g | gar industry,<br>ipment is<br>irinding |
|                           |                                            | nction can be m<br>s and where it i                                                                                    |                                                        |                                                    |                                                  |                                                              |                                                  |                                                              |                                    |                                        |
|                           | Commo                                      | on types of mill                                                                                                       | used in th                                             | ne food in                                         | dustry ar                                        | e:                                                           |                                                  |                                                              |                                    |                                        |
|                           | roto<br>imp<br>• Bal                       | mmer mills – a<br>or inside the cha<br>bact forces as th<br>I mills – the m<br>el balls (2.5 - 19                      | amber is f<br>ne hamme<br>ill consists                 | itted with<br>ers drive i<br>s of a slow           | hammer:<br>t again th<br>vly rotatir             | s along its l<br>ie breaker p<br>ig, horizont                | ength. 1<br>blate;<br>al steel d                 | The material                                                 | is disinteo                        | grated by filled with                  |
|                           | • Rol<br>pull                              | balls;<br><b>ler mills</b> – the<br>particles of the                                                                   | e food mat                                             | terial thro                                        | ugh the s                                        |                                                              |                                                  |                                                              |                                    |                                        |
|                           | Dis     opp     or b                       | ustable for diffe<br><b>c mills</b> – consi<br>posite direction.<br>between the dis<br>s improves the                  | st of one i<br>The food<br>cs. Pin- a                  | rotatory d<br>1 material<br>and disc r             | lisc in a s<br>passes f<br>nills have            | through the                                                  | adjustal                                         | ole gap betw                                                 | een disc a                         | and casing                             |
|                           |                                            | loping techniqu<br>osed to grindin                                                                                     |                                                        |                                                    |                                                  |                                                              |                                                  |                                                              |                                    |                                        |
| Environmental<br>impact   | Air:                                       |                                                                                                                        | es (dust) -<br>receiving;                              | – Grain a                                          | nd feed r                                        | nills typical                                                | ly have e                                        | emissions fro                                                | m three s                          | ources:                                |
|                           |                                            | -                                                                                                                      |                                                        |                                                    |                                                  | ample clear<br>storage to                                    | -                                                | aking, milling<br>t.                                         | and siev                           | ing;                                   |
|                           | Water:                                     | Depositio                                                                                                              | n from air                                             | emissior                                           | IS.                                              |                                                              |                                                  |                                                              |                                    |                                        |
|                           | Land:                                      | Depositio                                                                                                              | n from air                                             | emissior                                           | IS.                                              |                                                              |                                                  |                                                              |                                    |                                        |
|                           | Waste                                      | cleaning.                                                                                                              | Always s                                               | ome loss                                           | es occur                                         | in such situ                                                 | uations.                                         | otied for a ne<br>This solid wa<br>in cyclones               | aste can o                         | consist of                             |
|                           | Energy                                     | : Grinding                                                                                                             | (milling) re                                           | equires a                                          | substant                                         | ial energy i                                                 | nput.                                            |                                                              |                                    |                                        |
|                           | Accide                                     | ents: Spillage o                                                                                                       | during bulk                                            | < transfer                                         |                                                  |                                                              |                                                  |                                                              |                                    |                                        |
|                           | Noise:                                     | All grain a installatio                                                                                                |                                                        | I feed mi                                          | lls. Unit p                                      | process mil                                                  | ling is us                                       | sually contain                                               | ned within                         | the                                    |
|                           |                                            | ation Form<br>ion 2.3 (cont.)                                                                                          | $\geq$                                                 | Grindin                                            | g (Milling                                       | )                                                            |                                                  |                                                              |                                    |                                        |
| BAT for<br>grinding       | 1. sı                                      | the Applica                                                                                                            |                                                        |                                                    |                                                  |                                                              | 2.3 liste                                        | d on page 2                                                  | 5 for this a                       | aspect of                              |
|                           |                                            | ative BAT R                                                                                                            | equiren                                                | nents                                              |                                                  |                                                              |                                                  |                                                              |                                    |                                        |
|                           |                                            | he main contro                                                                                                         | -                                                      |                                                    |                                                  |                                                              |                                                  |                                                              |                                    |                                        |
|                           | 1. 11                                      | Product loss                                                                                                           |                                                        |                                                    |                                                  |                                                              |                                                  |                                                              |                                    |                                        |
|                           | 2. O                                       | ther control iss                                                                                                       |                                                        |                                                    |                                                  |                                                              |                                                  |                                                              |                                    |                                        |
|                           | •                                          | Emissions to                                                                                                           |                                                        | and odou                                           | r) - <mark>see</mark> S                          | Section 2.3.                                                 | 11.                                              |                                                              |                                    |                                        |
|                           | •                                          | Noise - see S                                                                                                          | Section 2.9                                            | 9.                                                 |                                                  |                                                              |                                                  |                                                              |                                    |                                        |
|                           | 3. N                                       | o further issues                                                                                                       |                                                        |                                                    |                                                  |                                                              |                                                  |                                                              |                                    |                                        |
| 32                        |                                            |                                                                                                                        | Dra                                                    | aft Versio                                         | on 3 Jul                                         | v 2001                                                       |                                                  |                                                              | Foo                                | d and Drink                            |

| INTRODU                   |                                                         | TECI                                                      |                                                    |                                                |                                                  | MISSIC                                                  |                                                  |                                                                                                       | MPAC                                           | т                                                |
|---------------------------|---------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------|------------------------------------------------|--------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------|
| Ma                        |                                                         | tivities/                                                 | HNIQU<br>Ground                                    |                                                |                                                  |                                                         |                                                  |                                                                                                       |                                                | Installation                                     |
| Manadement                |                                                         | atement                                                   | water                                              | Waste                                          | Energy                                           | Accidents                                               | Noise                                            | Monitoring                                                                                            | Closure                                        | issues                                           |
| Cutting etc.              | 2.3.3.2                                                 | Cutting,                                                  | slicing,                                           | choppi                                         | ng, min                                          | cing and                                                | pulping                                          |                                                                                                       |                                                |                                                  |
|                           |                                                         |                                                           |                                                    |                                                |                                                  |                                                         |                                                  | educe the siz<br>for direct cor                                                                       |                                                |                                                  |
| Summary of the activities | meat, fish,                                             |                                                           | getables,                                          | fruits, po                                     | tatoes, a                                        | nd various                                              | crops (su                                        | stry, for exan<br>gar beets), e                                                                       |                                                |                                                  |
|                           |                                                         | of potatoes                                               |                                                    |                                                |                                                  |                                                         |                                                  | d hydro cutte                                                                                         | ers are us                                     | sed. The                                         |
|                           | reciprocati<br>against the<br>on a carria               | ng blades, v<br>e blades by                               | which cut<br>centrifuga<br>/els acros              | the food<br>al force. I<br>s the blac          | when it p<br>n other c<br>de. Hard               | asses bene<br>ases (for sl<br>er fruits (lik            | eath. Sor<br>icing mea<br>e apples)              | equipment on<br>netimes the<br>at products) t<br>are simultar                                         | material<br>he mate                            | rial is held                                     |
|                           | cut into str                                            |                                                           | ng blades                                          | s. The str                                     | rips are fe                                      | ed to a seco                                            |                                                  | The food is f<br>f rotating kniv                                                                      |                                                | d and then<br>h operate at                       |
|                           | Chopping of<br>chopping the<br>high speed<br>sausages a | can perform<br>he material<br>I. This tech<br>and similar | n this. Ch<br>is placed<br>inique, no<br>products. | opping in<br>in a slow<br>rmally ca<br>In bowl | to a coar<br>ly rotatin<br>lled bowl<br>chopping | se pulp is a<br>g bowl and<br>chopping,<br>, the degree | subjected<br>subjected<br>is widely<br>e of comr | particles (cor<br>meat, fruits a<br>d to a set of l<br>used in the p<br>minution can<br>material to a | and vege<br>blades ro<br>productio<br>be varie | etables. In<br>otating at<br>n of<br>d depending |
|                           | Mincing is                                              | mainly use                                                | d for size                                         | reduction                                      | and hon                                          | nogenisatio                                             | n of meat                                        | t.                                                                                                    |                                                |                                                  |
|                           | mass. For material th                                   | this purpos                                               | se a movir<br>5. Most c                            | ng rough<br>ommonly                            | surface r<br>used are                            | uptures the                                             | fruits (ve                                       | on and makin<br>egetables) ar<br>lisc pulpers.                                                        | nd squee                                       | zes the                                          |
|                           | A developi                                              | ng cutting t                                              | echnique                                           | is the use                                     | e of ultras                                      | sonic cutting                                           | g.                                               |                                                                                                       |                                                |                                                  |
|                           | Air:                                                    | Not applie                                                | cable.                                             |                                                |                                                  |                                                         |                                                  |                                                                                                       |                                                |                                                  |
| Environmental<br>impact   | Water:                                                  | Water fro                                                 | m hydro c                                          |                                                |                                                  | ig of equipn<br>iit and vege                            |                                                  | may contain                                                                                           | product                                        | remnants                                         |
|                           | Land:                                                   | No direct                                                 | impacts.                                           |                                                |                                                  |                                                         |                                                  |                                                                                                       |                                                |                                                  |
|                           | Waste:                                                  | Residues                                                  | from dry                                           | cleaning                                       | and drair                                        | n catchpots                                             | and scre                                         | ens.                                                                                                  |                                                |                                                  |
|                           | Energy:                                                 | Equipmer                                                  | nt is usual                                        | ly electric                                    | ally pow                                         | ered.                                                   |                                                  |                                                                                                       |                                                |                                                  |
|                           | Accidents                                               | : Not applie                                              | cable.                                             |                                                |                                                  |                                                         |                                                  |                                                                                                       |                                                |                                                  |
|                           | Noise:                                                  |                                                           |                                                    |                                                |                                                  | quipment w<br>bowl cutter                               |                                                  | ate high noise                                                                                        | e levels e                                     | e.g. circular                                    |
|                           | Applicatio<br>Question                                  | on Form<br>2.3 (cont.)                                    | $\geq$                                             | Cutting                                        | , Slicing,                                       | Chopping,                                               | Mincing a                                        | and Pulping                                                                                           |                                                |                                                  |
|                           | With the                                                | Applica                                                   | tion the                                           | opera                                          | tor sho                                          | uld:                                                    |                                                  |                                                                                                       |                                                |                                                  |
|                           |                                                         | y the gener<br>ctivities;                                 | al Applica                                         | ation requ                                     | irements                                         | for Section                                             | 1 2.3 liste                                      | d on page 25                                                                                          | for this                                       | aspect of                                        |
|                           | Indicativ                                               | ve BAT R                                                  | equiren                                            | nents                                          |                                                  |                                                         |                                                  |                                                                                                       |                                                |                                                  |
| BAT for cutting etc.      |                                                         | nain contro<br>leaning tecl                               |                                                    | see Sect                                       | ion 2.3.1                                        | Э.                                                      |                                                  |                                                                                                       |                                                |                                                  |
|                           |                                                         | rther issues                                              | -                                                  |                                                |                                                  |                                                         |                                                  |                                                                                                       |                                                |                                                  |
|                           | Z. NU IU                                                |                                                           |                                                    | ancu.                                          |                                                  |                                                         |                                                  |                                                                                                       |                                                |                                                  |

| INTRODU                |                                           | TEC                                                    | HNIQU                                                  | JES                                                | EI                                   | VISSIO                                         | NS                                     |                                                                                   | IMPACT                               |                        |  |
|------------------------|-------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------|--------------------------------------|------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------|------------------------|--|
| Management Ma          | terials Act                               | ivities/<br>tement                                     | Ground<br>water                                        | Waste                                              | Energy                               | Accidents                                      | Noise                                  | Monitoring                                                                        | Closure                              | Installation<br>issues |  |
| Mixing etc.            | 2.3.3.3                                   | Mixina.                                                | blending                                               | n, and h                                           | omogei                               | nisation                                       |                                        | '                                                                                 |                                      |                        |  |
| Mixing etc.            |                                           |                                                        |                                                        |                                                    | -                                    |                                                | ture from                              | n two or more                                                                     | e compor                             | ients or to            |  |
| Summary of the         |                                           |                                                        |                                                        |                                                    |                                      |                                                |                                        | esult in impr<br>te food indus                                                    |                                      | racteristics           |  |
| activities             | Mixing (ble                               | nding) is t<br>iomogene                                | he combina                                             | ation of d                                         | ifferent m                           | naterials and                                  | d their sp                             | oatial distribu<br>ng operations                                                  | tion until                           | a certain              |  |
|                        | Solid/solid<br>custard, ice               |                                                        |                                                        | ed for mix                                         | ed feed,                             | blends of te                                   | a and co                               | offee, dried so                                                                   | oup, cake                            | e mixes,               |  |
|                        |                                           | the produ-                                             | ction of che                                           |                                                    |                                      |                                                |                                        | , etc. Solid/l<br>are mixed in a                                                  |                                      |                        |  |
|                        | Liquid/liquio<br>solutions.               | d mixing is                                            | applied fo                                             | or making                                          | emulsio                              | ns like mayo                                   | onnaise,                               | margarine a                                                                       | nd mixtur                            | es of                  |  |
|                        | Liquid/gas<br>spray dryin                 |                                                        |                                                        |                                                    |                                      |                                                | am, some                               | e sweets and                                                                      | l baked g                            | oods. For              |  |
|                        | screws in c<br>are used. I<br>impellers a | ylindrical o<br>For low vis<br>nd agitato<br>a gas. In | or cone-sh<br>scous solid<br>rs are appl<br>making ice | aped ves<br>//liquid mi<br>lied. For<br>e cream, v | sels. For<br>xtures ar<br>liquid/gas | r viscous sc<br>nd liquid/liqu<br>s mixing atc | olid/liquid<br>uid mixtur<br>omisers a | her rotary mi<br>and mixing l<br>res various ty<br>re used for t<br>nall gas bubb | kneading<br>/pes of st<br>pringing s | machines<br>tirrers,   |  |
|                        | materials.                                | It is, for ex                                          | ample, ap                                              | plied on v                                         | whole mil                            | k to reduce                                    | the size                               | more homog<br>of fat globul<br>re (200 - 300                                      | es and to                            |                        |  |
| Environmental          | Air:                                      |                                                        |                                                        |                                                    |                                      |                                                |                                        | ire involved.<br>olid/solid mix                                                   |                                      | ates (dust)            |  |
| impact                 | Water:                                    | Cleaning                                               | ].                                                     |                                                    |                                      |                                                |                                        |                                                                                   |                                      |                        |  |
|                        | Land:                                     | No direc                                               | t impacts.                                             |                                                    |                                      |                                                |                                        |                                                                                   |                                      |                        |  |
|                        | Waste:                                    | Product                                                | removed b                                              | y cleanin                                          | g.                                   |                                                |                                        |                                                                                   |                                      |                        |  |
|                        | Energy:                                   | Some of                                                | the operat                                             | tions of th                                        | nis group                            | require a si                                   | ubstantia                              | l energy inpu                                                                     | ut.                                  |                        |  |
|                        | Accidents                                 | Not appl                                               | icable.                                                |                                                    |                                      |                                                |                                        |                                                                                   |                                      |                        |  |
|                        | Noise:                                    | Not appl                                               | icable.                                                |                                                    |                                      |                                                |                                        |                                                                                   |                                      |                        |  |
|                        | Application<br>Question 2                 |                                                        | $\geq$                                                 | Mixing,                                            | Blending                             | and Homo                                       | genisatio                              | on                                                                                |                                      |                        |  |
|                        | With the                                  | Applica                                                | ation the                                              | opera                                              | tor sho                              | uld:                                           |                                        |                                                                                   |                                      |                        |  |
|                        |                                           | y the gene<br>tivities;                                | eral Applica                                           | ation requ                                         | irements                             | for Section                                    | 2.3 liste                              | d on page 2                                                                       | 5 for this                           | aspect of              |  |
|                        | Indicativ                                 | e BAT F                                                | Requirer                                               | nents                                              |                                      |                                                |                                        |                                                                                   |                                      |                        |  |
| BAT for<br>mixing etc. | • CI                                      | eaning teo                                             | bl issues an<br>chniques -                             | see Sect                                           |                                      | ).<br>Section 2.3.1                            | 11                                     |                                                                                   |                                      |                        |  |
|                        |                                           |                                                        |                                                        |                                                    | ., 300 0                             |                                                |                                        |                                                                                   |                                      |                        |  |
|                        | 2. No fui                                 | mer issue                                              | es are iden                                            | unea.                                              |                                      |                                                |                                        |                                                                                   |                                      |                        |  |

| INTRODUC                  | CTION                     | TEC                                     | HNIQU                                    | JES                                 | E                                 | MISSIO                                      | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   | MPAC                    | СТ                     |
|---------------------------|---------------------------|-----------------------------------------|------------------------------------------|-------------------------------------|-----------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------|------------------------|
| Management                |                           | tivities/<br>atement                    | Ground<br>water                          | Waste                               | Energy                            | Accidents                                   | Noise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Monitoring                                                        | Closure                 | Installation<br>issues |
| Forming etc.              | 2.3.4                     | Formin                                  | g, moul                                  | ding a                              | nd ext                            | ruding                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                         |                        |
|                           | Forming, n                | noulding ar                             | nd extrudin                              | ig are op                           | erations i                        | meant for at                                | ttaining a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | certain sha                                                       | be of solid             | d materials.           |
| Summary of the activities |                           |                                         |                                          |                                     |                                   | for the prod<br>mportant pr                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | bread, biscu<br>ep.                                               | uits, confe             | ectionery              |
|                           |                           |                                         |                                          |                                     |                                   |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | form in the m<br>has a fixed s                                    |                         | ith                    |
|                           | Cold ex                   | xtruders wh                             | nere the te                              | mperatur                            | e of the f                        | of operatior<br>eedstock re<br>feedstock is | emains at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |                         |                        |
|                           |                           | and spaghe                              | etti, but als                            | o for a lo                          | t of other                        | products lil                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | roducts sucl<br>ctionery and                                      |                         |                        |
|                           | pressure a<br>extruders t | nd pressed<br>he materia<br>e or two so | d continuo<br>Il is also he<br>rews. The | asly throu<br>at treate<br>rotation | igh open<br>d (cooke<br>of the sc | ings of the r<br>d), for exam               | required solution to solutiont | erial is kneac<br>shape. In sc<br>lubilise starc<br>for the trans | o-called c<br>ches. Ext | ooking<br>truders can  |
| Environmental             | Air:                      | Odour fro<br>steam.                     | om extrusi                               | on cookir                           | ıg arising                        | from extrue                                 | der vents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | as moisture                                                       | is flashe               | d off as               |
| impact                    | Water:                    | Waste is                                | generated                                | l during c                          | leaning                           | of equipmer                                 | nt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                   |                         |                        |
|                           | Land:                     | No direct                               | t impacts.                               |                                     |                                   |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                         |                        |
|                           | Waste:                    |                                         | lid waste r<br>on process                |                                     | enerated                          | due to loss                                 | of produ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ct at the sta                                                     | rt and sto              | p the                  |
|                           | Energy:                   | Extruder                                | s typically                              | show rela                           | atively hig                       | gh power co                                 | onsumptio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | on.                                                               |                         |                        |
|                           | Accidents                 | : Not appli                             | icable.                                  |                                     |                                   |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                         |                        |
|                           | Noise:                    | Not appli                               | icable.                                  |                                     |                                   |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                         |                        |
|                           | Applicatio<br>Question    | on Form<br>2.3 (cont.)                  | >                                        | Formine                             | g, Mouldi                         | ng and Extr                                 | usion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                   |                         |                        |
|                           | With the                  | e Applica                               | ation the                                | opera                               | tor sho                           | uld:                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                         |                        |
|                           |                           | ly the gene<br>ctivities;               | ral Applica                              | ation requ                          | irements                          | for Section                                 | 2.3 liste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d on page 2                                                       | 5 for this              | aspect of              |
|                           | Indicativ                 | /e BAT F                                | Requirer                                 | nents                               |                                   |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                         |                        |
| BAT for                   | 1. The r                  | main contro                             | ol issues a                              | re:                                 |                                   |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                         |                        |
| forming etc.              |                           | leaning tec                             |                                          |                                     | ion 2.3.1                         | 0.                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                         |                        |
|                           | • E                       | missions to                             | o air (dust a                            | and odou                            | r) - <mark>see</mark> S           | Section 2.3.                                | 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                   |                         |                        |

| INTRODUC                  | CTION                                               | TEC                                                                                                      | HNIQU                                                                                   | JES                                               | EI                                    | VISSIC                                            | NS                     |                                                                   | IMPACT                   |                        |  |
|---------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------|---------------------------------------------------|------------------------|-------------------------------------------------------------------|--------------------------|------------------------|--|
| Wanagement                |                                                     | tivities/<br>atement                                                                                     | Ground<br>water                                                                         | Waste                                             | Energy                                | Accidents                                         | Noise                  | Monitoring                                                        | Closure                  | Installation<br>issues |  |
| Blanching                 | 2.3.5                                               | Heat pr                                                                                                  | ocessir                                                                                 | ng usir                                           | ng stea                               | im or wa                                          | ater                   |                                                                   |                          |                        |  |
|                           | 2.3.5.1                                             | Blanch                                                                                                   |                                                                                         | •                                                 |                                       |                                                   |                        |                                                                   |                          |                        |  |
| Summary of the activities | Blanching<br>high tempe<br>retard bact              | is an impo<br>eratures for<br>erial and e<br>planching ir                                                | rtant step i<br>r a short pe<br>enzyme act<br>nclude the                                | eriod of ti<br>tion, whic                         | me. The h causes                      | primary fur<br>rapid dege                         | nction of<br>eneration | fruits and is<br>this operatio<br>of quality. (<br>uct, as well a | n is to ina<br>Other des | ctivate or             |  |
|                           |                                                     | -                                                                                                        |                                                                                         |                                                   | -                                     | luipment, b                                       | lanching               | may be acc                                                        | omplished                | d by:                  |  |
|                           |                                                     | ion in hot v<br>ire to live s                                                                            | water (80 t<br>team                                                                     | o 100 °C                                          | );                                    |                                                   |                        |                                                                   |                          |                        |  |
|                           | The operation                                       | tion is norn                                                                                             | nally carrie                                                                            |                                                   |                                       |                                                   |                        | sidence time<br>etable or frui                                    |                          |                        |  |
| Environmental<br>impact   | Air:                                                |                                                                                                          |                                                                                         |                                                   |                                       |                                                   |                        | ending on the<br>give rise to c                                   |                          | terial being           |  |
| πιρατι                    | Water:                                              |                                                                                                          | on of a low<br>sing from t                                                              |                                                   |                                       |                                                   | nt. Typic              | al character                                                      | istics of th             | ne waste               |  |
|                           |                                                     |                                                                                                          | Volume wa                                                                               | aste wate                                         |                                       | 2 – 120 m <sup>3</sup>                            |                        | •                                                                 |                          |                        |  |
|                           |                                                     |                                                                                                          | BOD<br>Suspende                                                                         | d solids                                          |                                       | 10 – 250 k <u>(</u><br>2.5 – 150 k                | -                      | -                                                                 |                          |                        |  |
|                           | Land:                                               |                                                                                                          | t impacts.                                                                              | 0 00100                                           |                                       | 2.0 100 K                                         | g/tornic (             | orproduct                                                         |                          |                        |  |
|                           | Waste:                                              |                                                                                                          | •                                                                                       | sidues fr                                         | om the b                              | ottom of the                                      | e blanche              | ers.                                                              |                          |                        |  |
|                           | Energy:                                             |                                                                                                          |                                                                                         |                                                   |                                       |                                                   |                        | is used in fla<br>jed to atmos                                    |                          | ning. Heat             |  |
|                           | Accidents                                           | : Uncontro                                                                                               | olled releas                                                                            | se of blan                                        | ching wa                              | ters may o                                        | verload tl             | he effluent m                                                     | nanageme                 | ent system.            |  |
|                           | Noise:                                              | Not appl                                                                                                 | icable.                                                                                 |                                                   |                                       |                                                   |                        |                                                                   |                          |                        |  |
|                           | Application                                         | n Form<br>2.3 (cont.)                                                                                    | >                                                                                       | Blanchi                                           | ng                                    |                                                   |                        |                                                                   |                          |                        |  |
| BAT for<br>blanching      | the a<br>Indicativ<br>1. The r<br>• W<br>• C<br>• E | y the gene<br>ctivities;<br><b>/e BAT F</b><br>nain contro<br>/ater use (I<br>leaning teo<br>missions to | eral Applica<br>Requirent<br>ol issues an<br>olanching v<br>chniques -<br>o air (dust a | nents<br>re:<br>water mai<br>see Sect<br>and odou | y be re-ue<br>on 2.3.10<br>r) - see S | for Section<br>sed in other<br>D.<br>Section 2.3. | r parts of             | d on page 2                                                       |                          | aspect of              |  |
|                           |                                                     |                                                                                                          | tment - see                                                                             |                                                   | 2.3.11.3                              |                                                   |                        |                                                                   |                          |                        |  |
|                           | 2. No fu                                            | rther issue                                                                                              | s are ident                                                                             | tified.                                           |                                       |                                                   |                        |                                                                   |                          |                        |  |

| INTROD     |                     |                          | HNIQL           | HNIQUES |        | EMISSIONS |       |            | IMPACT  |                        |  |  |
|------------|---------------------|--------------------------|-----------------|---------|--------|-----------|-------|------------|---------|------------------------|--|--|
| Management | Materials<br>inputs | Activities/<br>abatement | Ground<br>water | Waste   | Energy | Accidents | Noise | Monitoring | Closure | Installation<br>issues |  |  |

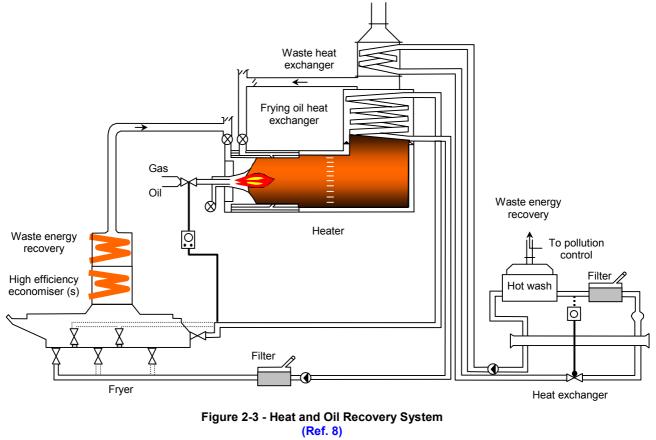
| Evaporation               | 2.3.5.2                                                                          | Evaporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Summary of the activities | be concentra<br>Evaporation<br>of food and i                                     | is the partial removal of water from liquid food by boiling. For instance, liquid products can ated from 5% dry solids to 45% or even higher depending on the viscosity of concentrates. is used to preconcentrate food, increase the solid content of food and to change the colour s used to process milk, starch, coffee, fruit juices, vegetable pastes and concentrates, sauces, and in sugar processing.                                                                                                                                                                                                                                                   |
|                           | the liquid foo                                                                   | pour is usually used as heating medium. The latent heat of condensation is transferred to<br>d to raise its temperature to the boiling point and evaporate the water. The vapour is then<br>m the surface of the boiling liquid.                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                           | achieved by                                                                      | roducts are heat sensitive it is often necessary to work at low temperatures. This is boiling the liquid part under vacuum. Evaporation occurs normally in a range of 50 °C to as simplest, evaporation is carried out by immersed electric heaters boiling off water to                                                                                                                                                                                                                                                                                                                                                                                         |
|                           | Shell and tub<br>Centri-therm                                                    | mmonly used equipment are multistage shell and tubes, sometimes plate evaporators.<br>be evaporators may be of natural or forced circulation, climbing or falling film types.<br>evaporators, wiped film evaporators (WFE) and thin film evaporators are specially<br>the evaporation of highly viscous products.                                                                                                                                                                                                                                                                                                                                                |
|                           | processing, e<br>steam to boil<br>energy to be<br>chain in orde<br>through the o | ale evaporation requiring significant energy, for example in sugar beet processing, starch<br>evaporation of milk and whey, multiple-effect evaporators are used. These use fresh<br>I off water vapour from the liquid in the first effect. The evaporated water still has sufficient<br>the heat source for the next effect, and so on. Vacuum is applied in a multiple effect<br>er for the water to boil off. The liquid being worked on is passed from one evaporator body<br>others so that it is subject to multiple stages of evaporation. In this way one unit of steam<br>e first evaporator might remove three to six units of water from the liquid. |
|                           | Other option                                                                     | s to reduce energy consumption by re-using heat contained in vapours include:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                           | •                                                                                | ecompression;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                           | <ul> <li>preheatir<br/>steam in</li> </ul>                                       | ng using the vapour to heat incoming feedstock or condensed vapour is used to raise a boiler.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                           |                                                                                  | nemical cleanings are carried out in order to ensure any time an efficient heat transfer. The guency is, depending on product and evaporator type, from 8 to more than 48 hours.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Environmental<br>impact   | ·                                                                                | Odour and particulate arising from incondensable gases vented to ensure efficient heat transfer and entrainment, where a fine mist of concentrate is produced during violent boiling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                           |                                                                                  | During processing product compounds gradually deposit on the heat exchange surfaces<br>and this fouling will require cleaning to prevent reduction in heat transfer. Cleaning is<br>carried out using alkaline and acid solutions, the order depending on the composition of<br>the deposits.                                                                                                                                                                                                                                                                                                                                                                    |
|                           | Land:                                                                            | No direct impacts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                           | Waste:                                                                           | Product removed by cleaning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                           | Energy:                                                                          | Steam raising requirements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                           | Accidents:                                                                       | Not applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                           |                                                                                  | Noise is often produced from evaporation and will be principally generated by the thermo compressor, the mechanical compressor, the steam ejectors and the high velocity of the fluids in the piping.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                           |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| INTRODUC               | NTRODUCTION TECHNIQ                                                                                                                   |                                                         |                                   | E                      | MISSIO       | IISSIONS  |             | IMPACT       |                        |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------|------------------------|--------------|-----------|-------------|--------------|------------------------|
| Management             | erials Activities/<br>puts abatement                                                                                                  | Ground<br>water                                         | Waste                             | Energy                 | Accidents    | Noise     | Monitoring  | Closure      | Installation<br>issues |
| Evaporation            | Application Form<br>Question 2.3 (cont                                                                                                | .)                                                      | Evapoi                            | ration                 |              |           |             |              |                        |
| BAT for<br>evaporation | With the Applica<br>1. supply the gene<br>the activities;                                                                             |                                                         | •                                 |                        |              | 2.3 liste | d on page 2 | 5 for this a | aspect of              |
|                        | Indicative BAT                                                                                                                        | Requirer                                                | nents                             |                        |              |           |             |              |                        |
|                        | <ol> <li>The main control</li> <li>Cleaning ter</li> <li>Emissions ter</li> <li>Effluent treater</li> <li>Energy efficient</li> </ol> | chniques -<br>o air (dust a<br>atment - <mark>se</mark> | see Sect<br>and odou<br>e Section | r) - see S<br>2.3.11.3 | Section 2.3. | 11.       |             |              |                        |
|                        | 2. No further issue                                                                                                                   | es are iden                                             | tified.                           |                        |              |           |             |              |                        |

| INTRODU                           | CTION                          | TEC                                                                 | HNIQU                                                      | JES                                     | F                        | MISSIO                          | NS                   |                                                                  | MPAC                  | Т                          |  |
|-----------------------------------|--------------------------------|---------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------|--------------------------|---------------------------------|----------------------|------------------------------------------------------------------|-----------------------|----------------------------|--|
| Management N                      | laterials Ac                   | tivities/<br>atement                                                | Ground<br>water                                            | Waste                                   |                          | Accidents                       | Noise                | Monitoring                                                       | Closure               | Installation<br>issues     |  |
| Pasteurisation                    | 2.3.5.3                        | Pasteu                                                              | risation,                                                  | sterilisa                               | tion, Ul                 | нт                              |                      |                                                                  |                       |                            |  |
| Summary of the activities         | treatment                      | stops bacte<br>. In heat tr                                         | erial and e<br>reatment v                                  | nzyme ac<br>arious tim                  | tivity; thi:<br>ie/tempe | s prevents le                   | oss of qu            | ndustry for c<br>ality and to<br>can be appl                     | keeps foo             | d non-                     |  |
|                                   | reduction of treatment of      | of enzyme a<br>over 100 °C                                          | and bacter<br>C for such                                   | rial activity<br>times tha              | y and a li<br>t a stable | imited shelf<br>e shelf life is | life. Ste<br>achieve | olied, this me<br>rilisation con<br>d. UHT mea<br>viscous liquid | nmonly m<br>ans a hea | eans a heat<br>t treatment |  |
|                                   |                                | asteurised                                                          | after bottl                                                | ing or car                              |                          |                                 |                      | mes the proc<br>vith product a                                   |                       |                            |  |
|                                   | For continu heating, ho        |                                                                     |                                                            |                                         | gh heat e                | exchangers                      | (tubular,            | plate and fra                                                    | ame) are a            | applied, with              |  |
|                                   |                                |                                                                     |                                                            |                                         |                          |                                 |                      | eat-treated ir ntinuous in c                                     |                       |                            |  |
|                                   | For UHT tr<br>direct stea      |                                                                     |                                                            |                                         |                          |                                 | ılar heat            | exchangers                                                       | is applied            | . However,                 |  |
|                                   | Air:                           | Potential                                                           | for fugitiv                                                | e losses f                              | rom refri                | geration sys                    | stems.               |                                                                  |                       |                            |  |
| Environmental<br>impact           | Water:                         |                                                                     |                                                            |                                         |                          |                                 |                      |                                                                  |                       |                            |  |
|                                   | Land:                          | No direct                                                           | t impacts.                                                 |                                         |                          |                                 |                      |                                                                  |                       |                            |  |
|                                   | Waste:                         | Product                                                             | residues a                                                 | nd conce                                | ntrated fl               | ushes can b                     | be collec            | ted for recov                                                    | very or ani           | mal feed.                  |  |
|                                   | Energy:                        | be accor                                                            | nplished b                                                 | y once-th                               | rough co                 |                                 | n a recirc           | ent and for c<br>culating chille                                 |                       | ooling can<br>system. The  |  |
|                                   | Accidents                      | : Not appli                                                         | cable.                                                     |                                         |                          |                                 |                      |                                                                  |                       |                            |  |
|                                   | Noise:                         | Not appli                                                           | cable.                                                     |                                         |                          |                                 |                      |                                                                  |                       |                            |  |
|                                   | Applicatio<br>Question         | on Form<br>2.3 (cont.)                                              | >                                                          | Pasteur                                 | isation, S               | Sterilisation,                  | UHT                  |                                                                  |                       |                            |  |
| BAT for<br>Pasteurisation<br>etc. | the a<br>Indicativ<br>1. The r | ly the gene<br>ctivities;<br>/e BAT F<br>nain contro<br>/ater use - | ral Applica<br><b>Requirer</b><br>I issues a<br>see Sectio | ation requ<br>ments<br>re:<br>on 2.2.3. | irements                 | for Section                     |                      | d on page 2<br>gh cooling" w                                     |                       |                            |  |
|                                   | • F                            | leaning tec                                                         | hniques -<br>ssions to a                                   | see Secti<br>air (refrige               | on 2.3.1<br>rants) - s   |                                 |                      | in cooning w                                                     | 101013 13 11          | טי אספאטופ.                |  |

| INTRODU                   | CTION                     | TEC                                                                 | HNIQL                               | JES _                   | EI          | <b>MISSIO</b> | NS                      |                                                  | MPAC                      | Т                             |
|---------------------------|---------------------------|---------------------------------------------------------------------|-------------------------------------|-------------------------|-------------|---------------|-------------------------|--------------------------------------------------|---------------------------|-------------------------------|
|                           |                           | tivities/<br>atement                                                | Ground<br>water                     | Waste                   | Energy      | Accidents     | Noise                   | Monitoring                                       | Closure                   | Installation<br>issues        |
| Baking                    | 2.3.6                     | Heat proc                                                           | cessing (                           | using ho                | ot air      |               |                         |                                                  |                           |                               |
|                           | 2.3.6.1                   | Baking                                                              |                                     |                         |             |               |                         |                                                  |                           |                               |
| Summary of the activities | A seconda<br>water activ  | ary objective                                                       | e of baking<br>urface of t          | ) is prese<br>he food.  | rvation b   | y destructio  | n of micr               | ) of food by<br>o-organisms<br>st baked foo      | and redu                  | uction of                     |
|                           | fruits and                |                                                                     | Baked ve                            | egetables               | may for     | example be    |                         | nd bakery pl<br>a filling or to                  |                           |                               |
|                           | the surface<br>surface ex | e is evapora                                                        | ated and read and read              | emoved b<br>Isport of r | by the cire | culating air. | When th                 | ed irradiation<br>ne rate of mo<br>ne product to | oisture los               | ss at the                     |
|                           | types, usir               | used for b<br>ng hot air as<br>Ill types car                        | s the heat                          | transfer n              | nedium.     | For baking    | be class<br>of fruits a | ified into dire<br>and vegetabl                  | ect or ind<br>les infrare | irect heating<br>ed ovens are |
| Environmental             | Air:                      | Products                                                            | of combu                            | stion from              | n natural   | gas etc., Oo  | dour.                   |                                                  |                           |                               |
| impact                    | Water:                    | Not appli                                                           | cable.                              |                         |             |               |                         |                                                  |                           |                               |
|                           | Land:                     | No direct                                                           | impacts.                            |                         |             |               |                         |                                                  |                           |                               |
|                           | Waste:                    | Not appli                                                           | cable.                              |                         |             |               |                         |                                                  |                           |                               |
|                           | Energy:                   | Baking o                                                            | fvegetable                          | es is prec              | eded by     |               | ning <mark>(see</mark>  | e, butane, o<br>Section 2.3<br>product.          |                           |                               |
|                           | Accidents                 | <b>:</b> Not appli                                                  | cable.                              |                         |             |               |                         |                                                  |                           |                               |
|                           | Noise:                    | Not appli                                                           | cable.                              |                         |             |               |                         |                                                  |                           |                               |
|                           | Applicatio<br>Question    | on Form<br>2.3 (cont.)                                              | $\geq$                              | Baking                  |             |               |                         |                                                  |                           |                               |
|                           | With the                  | e Applica                                                           | tion the                            | operat                  | tor sho     | uld:          |                         |                                                  |                           |                               |
|                           | 1. supp                   |                                                                     |                                     |                         |             |               | 2.3 liste               | d on page 28                                     | o for this                | aspect of                     |
|                           | Indicati                  | ve BAT F                                                            | Requirer                            | nents                   |             |               |                         |                                                  |                           |                               |
| BAT for<br>baking         | • E<br>-<br>• C           | main contro<br>missions to<br>low NOx<br>dour - see<br>nergy effici | air - see<br>burners.<br>Section 2. | Section 2<br>3.15.      |             |               |                         |                                                  |                           |                               |
|                           | 2. No fu                  | urther issue                                                        | s are iden                          | tified.                 |             |               |                         |                                                  |                           |                               |

| INTRODUCTION TEC  |                                            |                      | E2              | E P   | MISSIO | NS        | IMPACT |            |         |                        |
|-------------------|--------------------------------------------|----------------------|-----------------|-------|--------|-----------|--------|------------|---------|------------------------|
| Management Materi | ials <mark>Ac</mark><br>ts <mark>ab</mark> | tivities/<br>atement | Ground<br>water | Waste | Energy | Accidents | Noise  | Monitoring | Closure | Installation<br>issues |


| Roasting                | 2.3.6.2                                                                                               | Roasting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Summary of the          |                                                                                                       | the process is to dry and to enhance the aroma and/or to enhance the structure of raw Typical products that are roasted are coffee, cereals, nuts, cacao, chicory, fruits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| activities              | is pre-driec<br>8-20% unti<br>take place<br>in coffee al<br>aromas tha<br>other produ<br>the Maillard | oduct is usually exposed to hot air (temperatures over 100 °C). Sometimes the raw product d. First the water is evaporated from the product. The moisture content is decreased from I less than 1 %. If the product reaches a sufficient high temperature (over 120 °C) reactions in the product. These so-called Maillard reactions are important in the formation of aromas nd cacao. The duration of this roasting process is depending on the product and the specific at are required. Roasting times for coffee range between 1 and 20 minutes, for cacao and uct this can be up to 120 minutes. When the product temperature reaches its required level, d reactions are stopped by either cooling the product with air or by quenching the product followed by cooling with air. |
|                         | be a drum<br>bed roaste<br>time. The<br>a heated s<br>place in se<br>cooler or a                      | ng can be done either batch wise or continuously. Typical equipment for batch roasting can<br>roaster, a column roaster (cacao), a rotating disc roaster, a fluidised bed roaster, a spouting<br>r, etc. All equipment has in common that the product is heated and agitated at the same<br>product can be in direct contact with the hot air (convective heat transfer) or by contact with<br>urface (conductive heat transfer). Usually it is a combination of both. The cooling takes<br>parate equipment. This can be a cooling sieve where air is pulled through or a spouting bed<br>ny other equipment where the raw product is in contact with fresh air. Quenching with water<br>ace in the roasting chamber and sometimes in the cooling equipment.                            |
| Environmental<br>impact | Air:                                                                                                  | VOC will be present at both the outlet of the roaster and the cooler, with higher levels at the roaster outlet. VOC levels are higher when the product is roasted to a higher degree (e.g. the product temperature at the end of the roasting process is higher). The difference of emissions between a low roasted and a very high (=very dark) roasted product can be a factor 10. Usually the overall average emission of VOC is between 150 and 1500 mg Carbon/kg green coffee. For batch roasters the highest concentrations are emitted just before the end of the roasting process.                                                                                                                                                                                               |
|                         |                                                                                                       | During the roasting process the skins (chaff) will be separated and discharged with small particle size product components.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                         | Water:                                                                                                | Small amounts of water are used for quenching but is either partly evaporated or absorbed by the product.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         | Land:                                                                                                 | Potential deposition from air emissions of dust.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                         | Waste:                                                                                                | Dust collected in the air abatement system, for example within the cyclones. For coffee this can be between 0.1 to 1.5% of the amount of green coffee.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                         | Energy:                                                                                               | The typical energy consumption can range from 900 kJ/kg until 3000 kJ/kg. This is<br>depending on the type of roaster that is being used and also depending on the layout of<br>the roast off-gas system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         | Accidents                                                                                             | : Not applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                         | Noise:                                                                                                | Not applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                         | Applicatio<br>Question                                                                                | n Form<br>2.3 (cont.) Roasting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                         | With the                                                                                              | Application the operator should:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                         |                                                                                                       | y the general Application requirements for Section 2.3 listed on page 25 for this aspect of<br>ctivities;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         | Indicativ                                                                                             | e BAT Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| BAT for                 | 1. The n                                                                                              | nain control issues are:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| roasting                |                                                                                                       | missions to air - see Section 2.3.11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                         | • 0                                                                                                   | dour - see Section 2.3.15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                         | • Ei                                                                                                  | nergy efficiency - see Section 2.7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                         | 2. No fu                                                                                              | rther issues are identified.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| INTRODU                   | JCTION                                         | TEC                                    | HNIQU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | JES                                      | IMPACT                             |                                                                                                                                                                                                           |                         |                                  |                                                                   |                                      |                                         |
|---------------------------|------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------|-------------------------------------------------------------------|--------------------------------------|-----------------------------------------|
| Management <sup>N</sup>   |                                                | vities/<br>ement                       | Ground<br>water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Waste                                    | Energy                             | Accide                                                                                                                                                                                                    | ents                    | Noise                            | Monitoring                                                        | Closure                              | Installation<br>issues                  |
| Drying etc.               | 2.3.6.3                                        | Drying                                 | (liquid/so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | olid) and                                | l Dehya                            | Iration                                                                                                                                                                                                   | ı (so                   | lid/soli                         | d)                                                                |                                      |                                         |
| Summary of the activities | liquid foods<br>liquids, yield                 | by evapo<br>ling conc<br>eduction      | oration yield<br>entrated liq<br>in water ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ling solid<br>μid prodι<br>tivity. Τγ    | products<br>icts. The<br>pical app | s. It diff<br>e main<br>plicatior                                                                                                                                                                         | fers f<br>purp<br>ns of | rom eva<br>ose of dr             | s to remove t<br>poration, whi<br>ying is to ext<br>echnologies i | ch is emp<br>end the s               | oloyed on<br>shelf life of              |
|                           | Two differer                                   | nt principl                            | es can be a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | applied fo                               | or drying.                         |                                                                                                                                                                                                           |                         |                                  |                                                                   |                                      |                                         |
|                           |                                                | Но                                     | ot air dryin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | g                                        |                                    | Su                                                                                                                                                                                                        | rface                   |                                  | by heat cor<br>at transfer s                                      |                                      | through a                               |
|                           | direct with                                    | the liquid<br>from the                 | eating med<br>I product.<br>e hot air to t<br>pration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The heat                                 |                                    | wet<br>sur<br>thro                                                                                                                                                                                        | t food<br>face.<br>ough | d but sep<br>The he<br>the surfa | dium is not in<br>arated from<br>at is transfer<br>ace and by co  | it by a he<br>red by co<br>onvectior | at transfer<br>induction<br>in from the |
|                           | <ul><li>bin dry</li><li>tray dr</li></ul>      | vers,                                  | lot air dryer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rs are:                                  |                                    | and                                                                                                                                                                                                       | l rem<br>in ad<br>less  | noving wa<br>vantage             | e food produ<br>ater from the<br>s compared t<br>me and there     | food. Th<br>to hot air               | nis has two<br>dryers:                  |
|                           | • conve                                        | yor (belt o<br>ed bed dr               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                                    | •                                                                                                                                                                                                         | and                     | •                                | ess may be<br>oxygen.                                             | carried o                            | ut in                                   |
|                           | <ul> <li>kiln dr</li> </ul>                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                    | Th                                                                                                                                                                                                        |                         |                                  | pes of surfac                                                     | e dryers                             | are:                                    |
|                           | -                                              | natic drye<br>dryers,                  | rs,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |                                    | <ul><li>drum (roller dryers),</li><li>vacuum band/vacuum shelf dryers.</li></ul>                                                                                                                          |                         |                                  |                                                                   |                                      | 5.                                      |
|                           | -                                              | dryers,                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                    |                                                                                                                                                                                                           |                         |                                  |                                                                   |                                      |                                         |
|                           | <ul><li>relatively</li><li>very high</li></ul> | ntrol over<br>y high the<br>h rates of | drying cor<br>ermal efficie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nditions;<br>encies and<br>mass tran     | d high dr<br>sfer and              | ying ra                                                                                                                                                                                                   | quent                   | •                                | drying times;                                                     |                                      |                                         |
|                           | Ultrasonic d                                   | rying is a                             | developing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | g alternat                               | ive techr                          | nique fo                                                                                                                                                                                                  | or cer                  | tain food                        | ls.                                                               |                                      |                                         |
| Environmental<br>impact   | Air:                                           | outlet ter<br>content t<br>volatiles   | mperature of the the the the the tensor of t | of about 9<br>ne food to<br>itlet air is | 95 °C. Ir<br>be pum<br>loaded v    | n spray<br>ped to<br>vith drie                                                                                                                                                                            | drye<br>the a           | rs the re<br>tomiser,            | to about 21<br>quirement fo<br>results in a l<br>his gives rise   | r high-fee<br>nigher los             | ed moisture<br>ss of                    |
|                           | Water:                                         | Wastewa                                | aters from o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cleaning a                               | and wet                            | scrubbe                                                                                                                                                                                                   | er sys                  | stems.                           |                                                                   |                                      |                                         |
|                           | Land:                                          | Depositi                               | on of partic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ulate if ai                              | r emissio                          | on abat                                                                                                                                                                                                   | emei                    | nt is in a                       | dequate.                                                          |                                      |                                         |
|                           | Waste:                                         |                                        | s arising fro<br>sings can e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                                    |                                                                                                                                                                                                           |                         |                                  | ped in cyclor<br>al feed.                                         | ies or ba                            | g filters.                              |
|                           | Energy:                                        | process<br>to 3.5 M                    | in practice<br>J/kg. Spra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the energy<br>dryers a                   | gy consu<br>are large              | ally 2.2 MJ/kg is required. Due to energy losses in the sumption for water evaporation (drying) ranges from 2.5 ge-scale continuous process units with high energy considerably lower energy consumption. |                         |                                  |                                                                   |                                      | ges from 2.5                            |
|                           | Accidents:                                     | Failure c                              | of air emiss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ion abate                                | ment.                              |                                                                                                                                                                                                           |                         |                                  |                                                                   |                                      |                                         |
|                           | Noise:                                         | Not appl                               | icable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |                                    |                                                                                                                                                                                                           |                         |                                  |                                                                   |                                      |                                         |
|                           |                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                    |                                                                                                                                                                                                           |                         |                                  |                                                                   |                                      |                                         |

| INTRODU           | JCTION TECHNIQUES EMISSIONS IMPACT |                                                                                                                                                                       |                                                                                                                                                         |                                                                                                                                                        |                                                                                     |                                                                                 |                                                |                        |              |                        |
|-------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------|------------------------|--------------|------------------------|
| Management        | aterials<br>inputs                 | Activities/<br>abatement                                                                                                                                              | Ground<br>water                                                                                                                                         | Waste                                                                                                                                                  | Energy                                                                              | Accidents                                                                       | Noise                                          | Monitoring             | Closure      | Installation<br>issues |
|                   |                                    |                                                                                                                                                                       |                                                                                                                                                         |                                                                                                                                                        |                                                                                     |                                                                                 |                                                |                        |              |                        |
| Drying etc        |                                    | lication Form<br>stion 2.3 (cont.)                                                                                                                                    | X                                                                                                                                                       | Drying                                                                                                                                                 |                                                                                     |                                                                                 |                                                |                        |              |                        |
|                   | With                               | h the Applica                                                                                                                                                         | tion the                                                                                                                                                | e operat                                                                                                                                               | tor sho                                                                             | uld:                                                                            |                                                |                        |              |                        |
|                   | 1.                                 | supply the gene<br>the activities;                                                                                                                                    |                                                                                                                                                         |                                                                                                                                                        |                                                                                     |                                                                                 | 2.3 liste                                      | d on page 2            | 5 for this a | aspect of              |
|                   | Indi                               | cative BAT F                                                                                                                                                          | Requirer                                                                                                                                                | nents                                                                                                                                                  |                                                                                     |                                                                                 |                                                |                        |              |                        |
| BAT for<br>drying | 2.                                 | contain d<br>example,<br>Odour - see<br>Energy effici<br>Various measur<br>drying systems.<br>recirculation<br>use of direct<br>two-stage dr<br>beds;<br>pre concentr | air - see<br>exhaust a<br>lust particl<br>fabric filte<br>Section 2.<br>ency - see<br>es typicall<br>These inc<br>of exhaus<br>flame hea<br>ying, for e | Section 2<br>air is pass<br>es up to 2<br>ers.<br>3.15.<br>e Section<br>y used to<br>clude:<br>bt air to he<br>ating by na<br>xample flu<br>d foods us | ed throug<br>200 mg/n<br>2.7.<br>reduce h<br>eat inlet a<br>atural gas<br>uidised b | n <sup>3</sup> which will<br>neat losses :<br>ir;<br>s and low N<br>eds followe | I require<br>and save<br>Ox burne<br>d by spra | ers;<br>ay drying foll | ibatement    | t, for<br>mented for   |
|                   | 3.                                 | No further issue                                                                                                                                                      | s are iden                                                                                                                                              | tified.                                                                                                                                                |                                                                                     |                                                                                 |                                                |                        |              |                        |

| INTRODU                   | CTION                                                                | TEC                                                                         | HNIQU                                                                  | JES                                                            | E                                                                 | MISSIO                                                                          | NS                                                            | I                                                                                                                 | MPAC                                                              | Т                                                                      |
|---------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------|
| Wanadement                |                                                                      | tivities/<br>atement                                                        | Ground<br>water                                                        | Waste                                                          | Energy                                                            | Accidents                                                                       | Noise                                                         | Monitoring                                                                                                        | Closure                                                           | Installation<br>issues                                                 |
| Frying                    | 2.3.7                                                                | Heat proc                                                                   | cessing (                                                              | using h                                                        | ot oils                                                           |                                                                                 |                                                               |                                                                                                                   |                                                                   |                                                                        |
|                           | 2.3.7.1                                                              | Frying                                                                      |                                                                        |                                                                |                                                                   |                                                                                 |                                                               |                                                                                                                   |                                                                   |                                                                        |
| Summary of the activities | 200 °C. V                                                            | egetable oi                                                                 | l is norma                                                             | lly used.                                                      | Raw ma                                                            |                                                                                 | is fish, p                                                    | temperature<br>otatoes and<br>ggets.                                                                              |                                                                   |                                                                        |
|                           | The produ<br>oil. The sl<br>fryer and c<br>allows drai<br>and time v | ct drops int<br>atted belt fe<br>controls the<br>inage and t<br>aries accor | o the oil an<br>eeds the p<br>frying time<br>ransfers th<br>ding the p | nd the ex<br>roduct ur<br>e. The ta<br>ne product<br>roduct be | pansion<br>nder the r<br>ike out be<br>ot to the in<br>eing proce | of the batter<br>nain fryer be<br>elt at the end<br>nspection ar<br>essed. Terr | brings t<br>elt, which<br>d of the f<br>nd packin<br>perature | chamber, w<br>he product to<br>h takes the p<br>ryer lifts the<br>ng belts. The<br>es range from<br>go up as high | o the surf<br>roduct th<br>product c<br>e frying te<br>n 190 to 2 | ace of the<br>rough the<br>out of the oil,<br>emperature<br>205 °C and |
| Environmental<br>impact   | Air:                                                                 | type). Hi<br>breakdov                                                       | gh temper<br>vn product                                                | ature fryi<br>s. The a                                         | ng (180<br>ir above                                               | 200 °C) wi                                                                      | II result in tracted a                                        | turn depend<br>n more rapid<br>and vented.<br>ion.                                                                | producti                                                          | on of oil                                                              |
|                           | Water:                                                               | Wastewa                                                                     | ter from c                                                             | leaning w                                                      | hich will                                                         | contain fat l                                                                   | ooth in th                                                    | ne form of fre                                                                                                    | e and en                                                          | nulsified fat.                                                         |
|                           | Land:                                                                | No direct                                                                   | impacts.                                                               |                                                                |                                                                   |                                                                                 |                                                               |                                                                                                                   |                                                                   |                                                                        |
|                           | Waste:                                                               | Spent oil                                                                   | and conta                                                              | iners.                                                         |                                                                   |                                                                                 |                                                               |                                                                                                                   |                                                                   |                                                                        |
|                           | Energy:                                                              | The fryin                                                                   | g oven no                                                              | rmally is                                                      | heated w                                                          | ith steam or                                                                    | hot oil.                                                      |                                                                                                                   |                                                                   |                                                                        |
|                           | Accidents                                                            | : Not appli                                                                 | cable.                                                                 |                                                                |                                                                   |                                                                                 |                                                               |                                                                                                                   |                                                                   |                                                                        |
|                           | Noise:                                                               | Not appli                                                                   | cable.                                                                 |                                                                |                                                                   |                                                                                 |                                                               |                                                                                                                   |                                                                   |                                                                        |
|                           | Application                                                          | on Form<br>2.3 (cont.)                                                      | >                                                                      | Frying                                                         |                                                                   |                                                                                 |                                                               |                                                                                                                   |                                                                   |                                                                        |
|                           | With the                                                             | e Applica                                                                   | tion the                                                               | opera                                                          | tor sho                                                           | uld:                                                                            |                                                               |                                                                                                                   |                                                                   |                                                                        |
|                           |                                                                      | ly the gene<br>ctivities;                                                   | ral Applica                                                            | ation requ                                                     | iirements                                                         | for Section                                                                     | 2.3 liste                                                     | d on page 2                                                                                                       | 5 for this                                                        | aspect of                                                              |
|                           | Indicativ                                                            | ve BAT F                                                                    | Requirer                                                               | nents                                                          |                                                                   |                                                                                 |                                                               |                                                                                                                   |                                                                   |                                                                        |
| BAT for                   | 1. The r                                                             | main contro                                                                 | l issues a                                                             | re:                                                            |                                                                   |                                                                                 |                                                               |                                                                                                                   |                                                                   |                                                                        |
| frying                    | • 0                                                                  | /aste minim                                                                 | nisation - s                                                           | ee Sectio                                                      | on 2.2.2.                                                         |                                                                                 |                                                               |                                                                                                                   |                                                                   |                                                                        |
|                           | -                                                                    | oil recove                                                                  | ery to remo                                                            | ove entra                                                      | ined oil f                                                        | rom exhaus                                                                      | t gasses                                                      |                                                                                                                   |                                                                   |                                                                        |
|                           | • E                                                                  | missions to                                                                 |                                                                        |                                                                |                                                                   |                                                                                 |                                                               | u                                                                                                                 |                                                                   | 1. I                                                                   |
|                           | -                                                                    |                                                                             |                                                                        |                                                                |                                                                   | range of 1-                                                                     |                                                               | the frying pro                                                                                                    | ocess en                                                          | as when the                                                            |
|                           | -                                                                    | exhaust g                                                                   | gas recircu                                                            | ulation to                                                     | the burn                                                          | er (see Figu                                                                    | re 2-3).                                                      |                                                                                                                   |                                                                   |                                                                        |
|                           |                                                                      | dour - see                                                                  |                                                                        |                                                                |                                                                   |                                                                                 |                                                               |                                                                                                                   |                                                                   |                                                                        |
|                           | • E                                                                  | nergy effici                                                                | -                                                                      |                                                                |                                                                   | r ovbouct b                                                                     | ad                                                            |                                                                                                                   |                                                                   |                                                                        |
|                           |                                                                      |                                                                             | -                                                                      |                                                                | i the trye                                                        | r exhaust ho                                                                    | 000.                                                          |                                                                                                                   |                                                                   |                                                                        |
|                           | 2. No fu                                                             | irther issue                                                                | s are iden                                                             | tified.                                                        |                                                                   |                                                                                 |                                                               |                                                                                                                   |                                                                   |                                                                        |

| INTRODUCTION |                  |                          | TECHNIQUES      |       |        | MISSIO    |       | IMPACT     |         |                        |  |
|--------------|------------------|--------------------------|-----------------|-------|--------|-----------|-------|------------|---------|------------------------|--|
| Management   | Materials inputs | Activities/<br>abatement | Ground<br>water | Waste | Energy | Accidents | Noise | Monitoring | Closure | Installation<br>issues |  |





| INTRODUC                  | CTION                                    | TEC                                    | HNIQL                                      | JES                                     | Eľ                                   | VISSIO                                         | NS                                  |                                                                                     | MPAC                                 | Т                      |
|---------------------------|------------------------------------------|----------------------------------------|--------------------------------------------|-----------------------------------------|--------------------------------------|------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------|------------------------|
|                           |                                          | ivities/<br>tement                     | Ground<br>water                            | Waste                                   | Energy                               | Accidents                                      | Noise                               | Monitoring                                                                          | Closure                              | Installation<br>issues |
| Cooling,<br>Chilling      |                                          |                                        |                                            |                                         | moval                                | of heat                                        |                                     |                                                                                     |                                      |                        |
|                           | 2.3.8.1                                  |                                        | g, chilling                                |                                         |                                      |                                                |                                     |                                                                                     |                                      |                        |
| Summary of the activities | in order to processing                   | extend the<br>technique<br>temperatui  | shelf life of that is use re. Chilling     | of fresh a<br>ed to redu<br>g is the pr | nd proces<br>uce the te<br>rocessing | ssed foods.<br>emperature                      | Cooling<br>of the foo               | al and micro<br>can be defir<br>od from proc<br>the tempera                         | ned as th<br>essing te               | e<br>mperature         |
|                           | cooling me<br>(eventually<br>(ice-water) | dium in the<br>mixed with<br>Cooling o | e cooler ca<br>h agents li<br>of solid foo | in be grou<br>ke glycol)<br>ids and cl  | und wate<br>which is<br>hilling is o | r, water reci<br>recirculated<br>carried out b | rculating<br>d via a m<br>by contac | n a heat exch<br>over a cooli<br>nechanical re<br>cting the food<br>a liquid freon. | ng tower<br>frigeratio<br>d with col | or water<br>on system  |
|                           |                                          | uid nitroge                            | n or a liqui                               | d freon.                                |                                      |                                                |                                     | /hich can be<br>r sublimates                                                        |                                      |                        |
| <b>_</b>                  | Air:                                     | Fugitive                               | emissions                                  | of refrige                              | rants.                               |                                                |                                     |                                                                                     |                                      |                        |
| Environmental<br>impact   | Water:                                   | "Once th                               | rough cool                                 | ing" post                               | heat trea                            | atment requi                                   | ires subs                           | stantial quant                                                                      | tities of c                          | ooling water.          |
| •                         | Land:                                    | No direct                              | t impacts.                                 |                                         |                                      |                                                |                                     |                                                                                     |                                      |                        |
|                           | Energy:                                  | Mechani<br>energy.                     | cal refriger                               | ation sys                               | tems der                             | nand substa                                    | antial am                           | ounts of med                                                                        | chanical (                           | (electrical)           |
|                           | Other:                                   | No issue                               | S.                                         |                                         |                                      |                                                |                                     |                                                                                     |                                      |                        |
|                           | Applicatio<br>Question                   |                                        | >                                          | Cooling                                 | and Chil                             | ling                                           |                                     |                                                                                     |                                      |                        |
|                           | With the                                 |                                        |                                            | -                                       |                                      |                                                |                                     |                                                                                     |                                      |                        |
|                           | the ac                                   | ctivities;                             |                                            | -                                       | irements                             | for Section                                    | 2.3 liste                           | d on page 25                                                                        | 5 for this a                         | aspect of              |
|                           | Indicativ                                | e BAT F                                | Requiren                                   | nents                                   |                                      |                                                |                                     |                                                                                     |                                      |                        |
| BAT for<br>cooling and,   |                                          |                                        | l issues a                                 |                                         |                                      |                                                |                                     |                                                                                     |                                      |                        |
| chilling                  | • W                                      |                                        | see Sectio                                 |                                         | why the r                            | ouco of "onc                                   | o throug                            | h cooling" w                                                                        | otoro io n                           | ot possible            |
|                           | -<br>• CI                                | •                                      | hniques -                                  |                                         | •                                    |                                                | e moug                              | in cooling wa                                                                       | aiti 3 13 11                         | or possible.           |
|                           | • Fi                                     | igitive emi                            | ssions to a                                | ir (refrige                             | erants) - <mark>s</mark>             | see Section                                    | 2.3.13.                             |                                                                                     |                                      |                        |
|                           | • Er                                     | nergy effici                           | ency - <mark>see</mark>                    | Section                                 | 2.7.                                 |                                                |                                     |                                                                                     |                                      |                        |

| INTRODUC                                     |                                                | TECH                                        | INIQU           | JES         | E         | VISSIO                              | NS        |                       | MPAC       | т                      |
|----------------------------------------------|------------------------------------------------|---------------------------------------------|-----------------|-------------|-----------|-------------------------------------|-----------|-----------------------|------------|------------------------|
| Manadement                                   |                                                | vities/<br>ement                            | Ground<br>water | Waste       | Energy    |                                     | Noise     | Monitoring            | Closure    | Installation<br>issues |
| Freezing<br>Summary of the                   |                                                | Freezing                                    | or preser       |             |           |                                     |           |                       |            |                        |
| activities                                   | food can be<br>pizzas, etc.)                   | frozen like                                 |                 |             |           |                                     |           |                       |            |                        |
| Description of<br>techniques,<br>methods and | During the fr<br>freezing poir<br>is then remo | nt (in fresh                                | foods thi       | s include   | s heat pr |                                     |           |                       |            |                        |
| equipment                                    | A whole rang<br>•<br>•                         | Blast free<br>Belt free                     |                 | iral freeze |           | <ul><li>Cool</li><li>Imme</li></ul> |           | e freezers,<br>ezers, | mmon ar    | e:                     |
| Environmental                                | Air:                                           | Fugitive e                                  | missions        | of refrige  | rant.     |                                     |           |                       |            |                        |
| impact                                       |                                                | Not applic                                  |                 |             |           |                                     |           |                       |            |                        |
|                                              |                                                | No direct i                                 | •               |             |           |                                     |           |                       |            |                        |
|                                              | Energy:                                        |                                             |                 | ation sys   | tems der  | nand subst                          | antial am | ounts of me           | chanical   | (electrical)           |
|                                              | Accidents:                                     | energy.<br>Spillage o                       | f refriger:     | ant         |           |                                     |           |                       |            |                        |
|                                              |                                                | Compress                                    | -               |             | er units. |                                     |           |                       |            |                        |
|                                              | Application<br>Question 2.                     |                                             | >               | Freezin     | g         |                                     |           |                       |            |                        |
|                                              | With the J                                     | Applicat                                    | tion the        | operat      | or sho    | uld:                                |           |                       |            |                        |
|                                              | 1. supply<br>the act                           |                                             | al Applica      | ition requ  | irements  | for Section                         | 2.3 liste | d on page 2           | 5 for this | aspect of              |
|                                              | Indicative                                     | BATR                                        | equiren         | nents       |           |                                     |           |                       |            |                        |
| BAT for<br>freezing                          | • Fug                                          | ain control<br>gitive emise<br>ergy efficie | sions to a      | ir (refrige | -         | see Section                         | 2.3.13.   |                       |            |                        |
|                                              | 2. No furt                                     | her issues                                  | are iden        | tified.     |           |                                     |           |                       |            |                        |

| INTRODU                     | CTION                                                                                               | TEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HNIQL                                                                          | JES                                                                             | Eľ                                                                    | MISSIO                                                    | NS                                           |                                              | MPAC                     | Т                             |
|-----------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------|-------------------------------|
| Management N                |                                                                                                     | tivities/<br>atement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ground<br>water                                                                | Waste                                                                           | Energy                                                                | Accidents                                                 | Noise                                        | Monitoring                                   | Closure                  | Installation<br>issues        |
| Freeze<br>drying            | <b>2.3.8.3</b><br>Lyophilizat                                                                       | Freeze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                | ed to as f                                                                      | reeze dry                                                             | /ing, is the                                              | process o                                    | f removing v                                 | water fror               | n a product                   |
| Summary of the activities   | by sublima<br>dried by ev<br>high tempe                                                             | ition and development of a construction and the second sec | esorbtion.<br>at elevated<br>ulting is los                                     | The aim<br>d tempera<br>ss of taste                                             | of the pro<br>ture bec<br>or other                                    | ocess is to pause of the                                  | oreserve s<br>degradat<br>pects. The         | sensitive ma<br>ion of specit<br>e technique | aterial tha<br>fic compo | it cannot be<br>onents at     |
|                             | <ul> <li>drying<br/>remain<br/>the tray</li> <li>conder</li> <li>cooling</li> <li>vacuur</li> </ul> | chamber w<br>fixed on th<br>ys move the<br>nser to trap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ith temper<br>e heating<br>ough a va<br>water rem<br>supply ref<br>o reduce th | rature con<br>plates thr<br>acuum loc<br>noved fror<br>rigerant to<br>ne pressu | trolled shough the<br>c into a c<br>n the pro<br>the she<br>re in the | drying ope<br>Irying tunne<br>duct in the<br>elves and co | can be a<br>ration, or<br>el);<br>drying cha | batch cham<br>a semi-conf                    |                          | re the trays<br>⁄pe, in which |
| Environmental<br>impact     | Air:<br>Water:<br>Land:                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ter from th                                                                    | •                                                                               |                                                                       | odour from<br>lich may co                                 | •                                            | e product.                                   |                          |                               |
|                             | Waste:<br>Energy:                                                                                   | Not appli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | cable.                                                                         | ration syst                                                                     | ems der                                                               | nand substa                                               | antial amo                                   | ounts of med                                 | chanical (               | (electrical)                  |
|                             | Accidents<br>Noise:                                                                                 | : Spillage<br>Compres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | of refrigera                                                                   |                                                                                 | er units.                                                             |                                                           |                                              |                                              |                          |                               |
|                             | Applicatio<br>Question                                                                              | on Form<br>2.3 (cont.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | >                                                                              | Freeze                                                                          | Drying                                                                |                                                           |                                              |                                              |                          |                               |
|                             | 1. supp                                                                                             | <b>Applica</b><br>ly the gene<br>ctivities;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                |                                                                                 |                                                                       |                                                           | 2.3 listed                                   | l on page 28                                 | 5 for this a             | aspect of                     |
|                             | Indicativ                                                                                           | /e BAT F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Requirer                                                                       | nents                                                                           |                                                                       |                                                           |                                              |                                              |                          |                               |
| BAT for<br>freeze<br>drying | • F                                                                                                 | main contrc<br>ugitive emi<br>nergy effici                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ssions to a                                                                    | air (refrige                                                                    | -                                                                     | see Section                                               | 2.3.13.                                      |                                              |                          |                               |
|                             | 2. No fu                                                                                            | irther issue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s are iden                                                                     | tified.                                                                         |                                                                       |                                                           |                                              |                                              |                          |                               |

| INTROD     |                     |                          | HNIQUES         |       | EMISSIONS |           |       | IMPACT     |         |                        |  |
|------------|---------------------|--------------------------|-----------------|-------|-----------|-----------|-------|------------|---------|------------------------|--|
| Management | Materials<br>inputs | Activities/<br>abatement | Ground<br>water | Waste | Energy    | Accidents | Noise | Monitoring | Closure | Installation<br>issues |  |

# Extraction 2.3.9 Separation and concentration of food components

## 2.3.9.1 Extraction

Summary of the activities The objective of extraction is to recover valuable soluble components from a raw material by dissolving them in a liquid solvent.

Extraction is applied to a wide variety of food products. Examples include:

- the extraction of sugar from sugar-beets or sugar-cane; the extraction of oil from oilseeds;
  - the extraction of coffee extract from coffee beans;
- the extraction of caffeine form coffee beans;
- the extraction of various other compounds such as proteins, pectins, vitamins, pigments, essential oils, aroma compounds, flavour compounds etc. from many different materials.

The principle of extraction is that soluble components of a mixture are separated from insoluble or less soluble components by dissolving them in a suitable solvent. Raw materials that are suitable for extraction may contain either solids only, solids or a solution, or solids and a liquid. This is referred to as solid/liquid extraction, sometimes called leaching. When the soluble component is incorporated in a liquid, liquid/liquid extraction may be applied to recover the valuable soluble component.

Commonly the extract is of prime importance. In this case the residue is waste or by-product. It is not always the objective to win one particular compound in pure form from a raw material. Sometimes extraction is intended to separate all soluble compounds from the residue; an example is the extraction of coffee.

The efficiency of the extraction process depends on the selectivity of the solvent. Common solvents are:

- water;
- organic solvents like hexane, methylene chloride, ethyl acetate and alcohol;
- supercritical CO<sub>2</sub>.

Raw materials are usually pre-treated in order to ensure efficient extraction of desired compounds. For example, sugar beets and sugar cane is cut into thin slices, nuts and seeds are ground or flaked, coffee beans are roasted and ground, and tea leaves are dried and ground.

Most common is the method of counter-current extraction. Extraction can be accomplished in either batch or continuous processes. Batch-wise counter current extraction is normally only used for the processing of small amounts of material. In continuously operating extractors the solid material and the liquid (solvent) are transported in continuous counter current.

In principle, many different methods of transport are possible. Examples of transport systems are:

- perforated trays connected to endless chains and moving horizontally or vertically;
- chains in troughs;
- screw conveyors transporting the solid material in counter current flow vertically or upwards under a certain slope. The screws are perforated in order to obtain a uniform flow of liquid.
- endless perforated belt. Here the solvent is circulated by a pump and sprayed on top of the solid material.

One of the difficulties is the separation of the extracted material from the solvent and next to recover the extracted material from the solvent. The latter can be carried out by evaporation, crystallisation, distillation, steam stripping etc.

#### Extraction – Super Critical Fluid (SCF)

The potential for the use of SCF in the food industry has been recognised since the 1970s. There have also been many exaggerated claims about the potential for use in removing cholesterol from eggs, meat, dairy products etc. and this has perhaps led to a degree of cynicism about the use of SCF.

However, the technology has already been applied on a large scale internationally for extraction purposes in the fields of:

- coffee,
- tea,
- hops,
- spices and
- flavours

| INTRODU                                            | CTION                                                                                                                 | TEC                                                            | INIQU                                          | JES                                   | E                       | MISSIO                          | NS                      |                                                                             | MPAC                     | Т                        |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------|---------------------------------------|-------------------------|---------------------------------|-------------------------|-----------------------------------------------------------------------------|--------------------------|--------------------------|
| Wanadement                                         |                                                                                                                       | tivities/                                                      | Ground                                         | Waste                                 | Energy                  | Accidents                       | Noise                   | Monitoring                                                                  | Closure                  | Installation             |
|                                                    |                                                                                                                       | atement                                                        | water                                          |                                       |                         | _                               |                         |                                                                             |                          | issues                   |
| Extraction<br>Summary of the<br>activities (cont.) | and liquid temperatu                                                                                                  | extraction (ure of a subs solvent qua                          | using diffe<br>tance tak                       | erences ir<br>es it close             | i compor<br>er to its c | nent interact<br>ritical point. | tions). In<br>Beyond    | ion (using di<br>icreasing pre<br>I this point th<br>us be varied           | essure an<br>le fluid ex | d<br>hibits              |
|                                                    | near ambi                                                                                                             |                                                                | ns (31.1 °                                     |                                       |                         |                                 |                         | at the critical<br>sing of heat                                             |                          |                          |
|                                                    | more conv                                                                                                             |                                                                | kane solv                                      | ent. It is                            | clear tha               | t SCF is a h                    |                         | ess has elim<br>gy process b                                                |                          |                          |
|                                                    | <ul> <li>application</li> <li>edible</li> <li>corn at</li> <li>sunflow</li> <li>peanut</li> <li>concertion</li> </ul> | ns (coffee, te<br>oil extraction<br>nd wheat ge<br>ver seeds;  | ea, hops a<br>n replacin<br>rm;<br>ish oils; a | and spice<br>Ig hexane<br>Ind         | s) there I              |                                 |                         | addition to th                                                              |                          |                          |
| Environmental<br>impact                            | Air:                                                                                                                  | odour, du                                                      | e to emis<br>er vapou                          | sion of H <sub>2</sub><br>r containir | S and o                 | rganic comp                     | ounds.                  | <ul> <li>Extraction</li> <li>When extrac</li> <li>organic matter</li> </ul> | tion with                | water takes              |
|                                                    | Water:                                                                                                                | Water usa                                                      | age is an                                      | item whe                              | n water i               | s used as a                     | solvent i               | n the extract                                                               | tion proce               | ess.                     |
|                                                    | Land:                                                                                                                 | No direct                                                      | impact.                                        |                                       |                         |                                 |                         |                                                                             |                          |                          |
|                                                    | Waste:                                                                                                                | Residues                                                       | from extr                                      | action if r                           | no food, a              | animal feed                     | or assoc                | iated applica                                                               | ation is av              | ailable.                 |
|                                                    | Energy:                                                                                                               | steam an                                                       | d 25 - 50                                      | kWh per                               | ton oilse               | ed. For exti                    | raction of              | ption ranges<br>f coffee a typ<br>200 to 300 k                              | ical cons                | umption per              |
|                                                    |                                                                                                                       | steam, 50<br>moving e                                          | 0 to 700<br>quipment<br>gy is need             | kWh elec<br>They re<br>ded once       | trical pov<br>quire sut | ver. Sugar<br>ostantial ele     | diffusers<br>ctrical po | method are<br>consist of ve<br>ower to start<br>ors are typica              | ery large<br>the rotatio | items of<br>on, although |
|                                                    | Accidents                                                                                                             | s: Spillage c                                                  | of solvent.                                    |                                       |                         |                                 |                         |                                                                             |                          |                          |
|                                                    | Noise:                                                                                                                | Possible                                                       | sources o                                      | of noise ar                           | e: coolin               | g towers, fa                    | ins, stear              | m safety valv                                                               | /es.                     |                          |
|                                                    | Application                                                                                                           | on Form<br>2.3 (cont.)                                         | $\geq$                                         | Extracti                              | on                      |                                 |                         |                                                                             |                          |                          |
|                                                    | With the                                                                                                              | e Applica                                                      | tion the                                       | e opera                               | or sho                  | ould:                           |                         |                                                                             |                          |                          |
|                                                    | the a                                                                                                                 | ctivities;                                                     |                                                |                                       | irements                | for Section                     | 2.3 liste               | d on page 2                                                                 | 5 for this               | aspect of                |
|                                                    | Indicati                                                                                                              | ve BAT R                                                       | equirer                                        | nents                                 |                         |                                 |                         |                                                                             |                          |                          |
| BAT for<br>extraction                              | • F<br>• V                                                                                                            | main control<br>ugitive emis<br>/ater use - s<br>nergy efficie | sions to a<br>see Sectio                       | air (refrige<br>on 2.2.3.             |                         | see Section                     | 2.3.13.                 |                                                                             |                          |                          |
|                                                    |                                                                                                                       | Intergy enicid                                                 | -                                              |                                       |                         |                                 |                         |                                                                             |                          |                          |
|                                                    | 2. NUI                                                                                                                |                                                                |                                                | ancu.                                 |                         |                                 |                         |                                                                             |                          |                          |
|                                                    |                                                                                                                       |                                                                |                                                |                                       |                         |                                 |                         |                                                                             |                          |                          |

| INTRODUCTION TECHNIQUES EMISSIONS IMPACT |                                                           |                                                          |                                                        |                                                  |                                   |                                                             |                                                   |                                                                                                       |                                                     |                                                       |  |  |
|------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------|-----------------------------------|-------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------|--|--|
| Management                               |                                                           | ivities/<br>tement                                       | Ground<br>water                                        | Waste                                            | Energy                            | Accidents                                                   | Noise                                             | Monitoring                                                                                            | Closure                                             | Installation<br>issues                                |  |  |
| Centrifugation                           | 2.3.9.2                                                   | Centrifu                                                 | ugation                                                |                                                  |                                   |                                                             |                                                   |                                                                                                       |                                                     |                                                       |  |  |
| Summary of the                           | Centrifugat centrifugal                                   | ion is useo<br>forces                                    | d to separa                                            | ate immis                                        | cible liqu                        | ids and soli                                                | ds from I                                         | iquids by the                                                                                         | applicat                                            | ion of                                                |  |  |
|                                          | concentrati<br>lactose and                                | on of crea<br>l whey pro<br>, vegetable                  | m, butter c<br>tein proce                              | oil produc<br>ssing, etc                         | tion, proc<br>This pi             | luction and<br>ocessing te                                  | recovery<br>chnique                               | f milk, skimm<br>y of casein, ir<br>is also used<br>k, oil and fat                                    | n the che<br>in bever                               | ese industry,<br>age                                  |  |  |
|                                          | driving force<br>the separate<br>materials.<br>the skim m | e for sepa<br>tion proces<br>The force<br>ilk is the co  | ration is th<br>ss is strong<br>generated<br>ontinuous | e differer<br>gly accele<br>depends<br>phase, th | rated. T<br>on the s<br>e fat pha | nsity betwee<br>he centrifug<br>peed and ra<br>se is a disc | en the ph<br>jal forces<br>adius of i<br>ontinuou | ne of, which i<br>nases. By us<br>s are generat<br>rotation. In r<br>is phase form<br>d particles, ha | sing centr<br>ted by rot<br>aw milk f<br>ned of fat | ifugal forces<br>ating the<br>or example,<br>globules |  |  |
|                                          | When the or gravity (kno                                  |                                                          |                                                        |                                                  |                                   | e is not a lir                                              | niting fac                                        | ctor separatio                                                                                        | on can ta                                           | ke place by                                           |  |  |
|                                          | Air:                                                      | Not appli                                                | cable.                                                 |                                                  |                                   |                                                             |                                                   |                                                                                                       |                                                     |                                                       |  |  |
| Environmental<br>impact                  | Water:                                                    | Cleaning                                                 |                                                        |                                                  |                                   |                                                             |                                                   |                                                                                                       |                                                     |                                                       |  |  |
|                                          | Land:                                                     | No direct                                                | t impacts.                                             |                                                  |                                   |                                                             |                                                   |                                                                                                       |                                                     |                                                       |  |  |
|                                          | Waste:                                                    | Not appli                                                | cable.                                                 |                                                  |                                   |                                                             |                                                   |                                                                                                       |                                                     |                                                       |  |  |
|                                          | Energy:                                                   |                                                          |                                                        |                                                  |                                   |                                                             |                                                   | d for pumping<br>le equipment                                                                         |                                                     | ges and                                               |  |  |
|                                          | Noise:                                                    |                                                          |                                                        |                                                  |                                   |                                                             |                                                   | atively high lo<br>sures need t                                                                       |                                                     |                                                       |  |  |
|                                          | Applicatio<br>Question                                    | n Form<br>2.3 (cont.)                                    | $\geq$                                                 | Centrifu                                         | igation                           |                                                             |                                                   |                                                                                                       |                                                     |                                                       |  |  |
| BAT for centrifugation                   | With the                                                  | Applica                                                  | ntion the                                              | opera                                            | tor sho                           | uld:                                                        |                                                   |                                                                                                       |                                                     |                                                       |  |  |
|                                          |                                                           | y the gene<br>ctivities;                                 | ral Applica                                            | ation requ                                       | irements                          | for Section                                                 | 2.3 liste                                         | d on page 2                                                                                           | 5 for this                                          | aspect of                                             |  |  |
|                                          | Indicativ                                                 | re BAT F                                                 | Requirer                                               | nents                                            |                                   |                                                             |                                                   |                                                                                                       |                                                     |                                                       |  |  |
|                                          | • Er                                                      | nain contro<br>nergy effici<br>pise - <mark>see</mark> ( | ency - <mark>see</mark>                                | Section                                          | 2.7.                              |                                                             |                                                   |                                                                                                       |                                                     |                                                       |  |  |
|                                          | 2. No fu                                                  | rther issue                                              | s are iden                                             | tified.                                          |                                   |                                                             |                                                   |                                                                                                       |                                                     |                                                       |  |  |

| INTRODUC                  | CTION                                     | TEC                                                    | HNIQU                                      | JES                                  | El                                     | VISSIO                          | NS                       | IMPACT                                      |            |                        |  |  |  |
|---------------------------|-------------------------------------------|--------------------------------------------------------|--------------------------------------------|--------------------------------------|----------------------------------------|---------------------------------|--------------------------|---------------------------------------------|------------|------------------------|--|--|--|
| Manadement                |                                           | ivities/<br>tement                                     | Ground<br>water                            | Waste                                | Energy                                 | Accidents                       | Noise                    | Monitoring                                  | Closure    | Installation<br>issues |  |  |  |
| Filtration                | 2.3.9.3                                   | Filtratio                                              |                                            |                                      |                                        |                                 |                          |                                             |            |                        |  |  |  |
| Summary of the activities | <ul><li>syrups)</li><li>to sepa</li></ul> | y liquid pro<br>. The filtra<br>rate liquid            | oducts by t<br>ite is the o<br>from signif | he remov<br>bjective c<br>ficant qua | al of sma<br>of the ope<br>ontity of s | all amounts<br>eration;         | of solid p<br>al where o | nctions:<br>particles (e.g<br>pbtaining the |            |                        |  |  |  |
|                           | Filtration eo<br>or by the a              | quipment o<br>pplication o                             | perates ei<br>of a vacuu                   | ther by th<br>m (vacuu               | ne applica<br>m filtratic              | ation of pres<br>on) to the fil | ssure (pro<br>trate side | essure filtrati                             | on) to the | e feed side            |  |  |  |
|                           | Air:                                      | The air d                                              | ischarge fi                                | rom the v                            | acuum p                                | ump.                            |                          |                                             |            |                        |  |  |  |
| Environmental<br>impact   | Water:                                    | waste stream.                                          |                                            |                                      |                                        |                                 |                          |                                             |            |                        |  |  |  |
|                           | Land:                                     |                                                        |                                            |                                      |                                        |                                 |                          |                                             |            |                        |  |  |  |
|                           | Waste:                                    |                                                        |                                            |                                      |                                        |                                 |                          | a suitable me<br>elguhr in a bi             |            | ecovery or             |  |  |  |
|                           | Energy:                                   | Required                                               | l for applic                               | ation of p                           | ressure o                              | or vacuum.                      |                          |                                             |            |                        |  |  |  |
|                           | Accidents                                 | : Not appli                                            | cable.                                     |                                      |                                        |                                 |                          |                                             |            |                        |  |  |  |
|                           | Noise:                                    | Not appli                                              | cable.                                     |                                      |                                        |                                 |                          |                                             |            |                        |  |  |  |
|                           | Application<br>Question 2                 |                                                        | $\ge$                                      | Filtratio                            | n                                      |                                 |                          |                                             |            |                        |  |  |  |
|                           | With the                                  | Applica                                                | tion the                                   | operat                               | tor sho                                | uld:                            |                          |                                             |            |                        |  |  |  |
|                           |                                           | y the gene<br>ctivities;                               | ral Applica                                | tion requ                            | irements                               | for Section                     | 2.3 liste                | d on page 28                                | o for this | aspect of              |  |  |  |
|                           | Indicativ                                 | re BAT F                                               | Requiren                                   | nents                                |                                        |                                 |                          |                                             |            |                        |  |  |  |
| BAT for<br>filtration     | • W<br>• W                                | nain contro<br>astewater<br>aste handl<br>nergy effici | treatment<br>ing and dis                   | - <mark>see Sec</mark><br>sposal - s | ee Section                             |                                 |                          |                                             |            |                        |  |  |  |

| INTRODU        | JCTION                                               | TEC                                                                                                                | HNIQL                                                | JES                                           | E                                                | MISSIC                                                   | NS                                 |                                                                               | MPAC                                 | СТ                               |
|----------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|--------------------------------------------------|----------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------|--------------------------------------|----------------------------------|
|                | Materials Ac                                         | tivities/<br>atement                                                                                               | Ground<br>water                                      | Waste                                         |                                                  |                                                          | Noise                              | Monitoring                                                                    | Closure                              | Installation<br>issues           |
|                |                                                      | atement                                                                                                            | water                                                |                                               |                                                  |                                                          |                                    |                                                                               |                                      | 135065                           |
| Membrane       | 2.3.9.4                                              | Membr                                                                                                              | ane sepa                                             | ration                                        |                                                  |                                                          |                                    |                                                                               |                                      |                                  |
| separation     |                                                      |                                                                                                                    |                                                      |                                               |                                                  |                                                          |                                    | s) from a solu<br>hnique. We                                                  |                                      |                                  |
| Summary of the | membrane                                             | e filtration a                                                                                                     | and electro                                          | dialysis;                                     | both are                                         | membrane                                                 | separati                           | on technique                                                                  | es.                                  | -                                |
| activities     |                                                      |                                                                                                                    |                                                      |                                               |                                                  | n of liquids (<br>er purificati                          |                                    | ple cheese v                                                                  | whey), de                            | -                                |
|                | porous me<br>large to al<br>Fractionat<br>of the mer | embrane. S<br>low them to<br>ion of the f                                                                          | Some of th<br>pass thro<br>eed strean<br>ich is know | e dissolv<br>ough and<br>n occurs<br>n as the | ed solids<br>this is de<br>with some<br>concentr | are held ba<br>pendent up<br>e molecules<br>ate or reten | ick becau<br>on the ty<br>being co | solution is f<br>use their mol<br>pes of memb<br>oncentrated<br>le the smalle | ecular siz<br>pranes us<br>on the up | ze is too<br>sed.<br>stream side |
|                | The variou                                           | us membra                                                                                                          | ne filtratior                                        | n techniq                                     | ues for ex                                       | ample use                                                |                                    | component f                                                                   |                                      |                                  |
|                |                                                      | haracterised by their membrane pore size (the size of the smallest particle that cannot pass through he membrane): |                                                      |                                               |                                                  |                                                          |                                    |                                                                               |                                      |                                  |
|                | during                                               |                                                                                                                    | tion of ultr                                         | a clean n                                     |                                                  |                                                          |                                    | to remove b<br>milk into a c                                                  |                                      | om skim milk<br>n retentate      |
|                | objecti                                              | ve of conce                                                                                                        | entrating th                                         | ne respec                                     | tive prote                                       |                                                          | ents. Otl                          | oth skim mill<br>ner applicatio                                               |                                      |                                  |
|                | <ul> <li>Nanofi</li> </ul>                           | Itration (NF                                                                                                       | ) pore size                                          | e range 1                                     | - 10 nm                                          |                                                          | ve perme                           | ability for mi                                                                | nerals, a                            | nd are used                      |
|                | Reverse mineral                                      | se Osmosis<br>als and are<br>ates and re                                                                           | s (RO) pore<br>therefore u                           | e size rar<br>used for o                      | nge 0.1 -<br>de waterii                          | 1 nm memb<br>ng, concent                                 | oranes ar<br>ration of             | e permeable<br>whey or skin                                                   | n milk, po                           |                                  |
|                | electro<br>memb                                      | o dialysis, lo<br>ranes, thes                                                                                      | ow molecul<br>e membra                               | ar weigh<br>nes bein                          | t ions mig<br>g arrange                          | grate in an e<br>d in an alte                            | electrical<br>rnate ma             | n applied ele<br>field across<br>inner betwee<br>y is for demi                | cationic c<br>en the cat             | or anionic<br>hode and           |
| Environmental  | Air:                                                 | Not appl                                                                                                           | icable.                                              |                                               |                                                  |                                                          |                                    |                                                                               |                                      |                                  |
| impact         | Water:                                               | Handling                                                                                                           | g of permea                                          | ate (if not                                   | t reused),                                       | and cleani                                               | ng.                                |                                                                               |                                      |                                  |
|                | Land:                                                | No direc                                                                                                           | t impacts.                                           |                                               |                                                  |                                                          |                                    |                                                                               |                                      |                                  |
|                | Waste:                                               | Handling                                                                                                           | g and dispo                                          | osal of co                                    | ncentrate                                        | e.                                                       |                                    |                                                                               |                                      |                                  |
|                | Energy:                                              |                                                                                                                    |                                                      |                                               |                                                  |                                                          |                                    | trical energy<br>ansport of ic                                                |                                      | ed. In                           |
|                | Accident                                             | <b>s</b> : Not appl                                                                                                | icable.                                              |                                               |                                                  |                                                          |                                    |                                                                               |                                      |                                  |
|                | Noise:                                               | Not appl                                                                                                           | icable.                                              |                                               |                                                  |                                                          |                                    |                                                                               |                                      |                                  |
|                | Application                                          | on Form<br>2.3 (cont.)                                                                                             | >                                                    | Membr                                         | ane Sepa                                         | aration                                                  |                                    |                                                                               |                                      |                                  |
|                | With the                                             | e Applica                                                                                                          | ation the                                            | e opera                                       | tor sho                                          | uld:                                                     |                                    |                                                                               |                                      |                                  |
|                |                                                      | ly the gene<br>activities;                                                                                         | eral Applica                                         | ation requ                                    | uirements                                        | for Sectior                                              | 2.3 liste                          | d on page 2                                                                   | 5 for this                           | aspect of                        |
|                | Indicati                                             | ve BAT l                                                                                                           | Requirer                                             | nents                                         |                                                  |                                                          |                                    |                                                                               |                                      |                                  |
| BAT for        | 1. The                                               | main contro                                                                                                        | ol issues a                                          | re:                                           |                                                  |                                                          |                                    |                                                                               |                                      |                                  |
| membrane       |                                                      | Vastewater                                                                                                         | treatment                                            | - see Se                                      | ction 2.3.                                       | 11.3.                                                    |                                    |                                                                               |                                      |                                  |
| separation     |                                                      | Vaste hand<br>Energy effic                                                                                         | -                                                    | -                                             |                                                  | on 2.5.                                                  |                                    |                                                                               |                                      |                                  |
|                | •                                                    | inergy enit                                                                                                        | iency - Set                                          |                                               | ۷.۱.                                             |                                                          |                                    |                                                                               |                                      |                                  |

| INTROD     |                     |                          | TECHNIQUES      |       |        | EMISSIONS |       |            | IMPACT  |                        |  |
|------------|---------------------|--------------------------|-----------------|-------|--------|-----------|-------|------------|---------|------------------------|--|
| Management | Materials<br>inputs | Activities/<br>abatement | Ground<br>water | Waste | Energy | Accidents | Noise | Monitoring | Closure | Installation<br>issues |  |

# Cleaning & sanitation

Summary of the

activities

## 2.3.10 Cleaning and sanitation

Processing equipment and production facilities are cleaned and sanitised periodically, with the frequency varying according to products and processes. The aim of cleaning and sanitation is to remove product remnants from the foregoing process and remove other contaminants and microbes.

Cleaning and sanitation can be carried out in various ways:

- manually,
- cleaning in place, (CIP),
- high-pressure jet cleaning,
- foam cleaning.

Manual cleaning means that the equipment to be cleaned is taken apart and manually cleaned (brushed) in a cleaning solution. Only mild conditions, with regard to temperature and cleaning agents, can be used.

Cleaning in place (CIP) is used especially for closed process equipment and tanks. The cleaning solution is pumped through the equipment and is sometimes distributed by sprayers. The cleaning programme is mostly run automatically. The following steps can be distinguished:

- pre-rinse with water,
- circulation with a cleaning solution,
- intermediate rinse,
- disinfection,
- final rinse with water.

In automatic CIP-systems the final rinse water is often reused for pre-rinsing. In CIP-cleaning high temperatures (up to 90 °C) are used and strong cleaning agents.

CIP systems can be much more efficient than manual cleaning but should be designed and used with due consideration to wastewater minimisation. Cleaning programmes controlled by fixed volume sensors tend to use less water than fixed time programmes. Further improvements can be made by the installation of long life diaphragm valves in CIP systems. (ref.  $8 - 2^{nd}$  bullet).

In high pressure jet-cleaning, water is sprayed at the surface to be cleaned at a pressure of about 40 to 65 bar. Cleaning agents are injected in the water; moderate temperatures up to 60 °C are used. An important part of the cleaning action is due to mechanical effects. Pressure washing reduces water and chemical consumption compared with mains hoses. It is important, however, that a pressure that is both safe and efficient is used. There is some concern in the food industry about the hygiene implications of over-splash and aerosols associated with the use of high pressure hoses.

A pressurised water ring main is generally preferable to mobile pressure washing machines, which require longer downtime, emit diesel fumes and tend to use more water.

In foam cleaning, a foaming cleaning solution is sprayed on the surface to be cleaned. The foam adheres to the surface. It stays about 10 to 20 minutes on the surface and is then rinsed away with water.

High-pressure jet cleaning and foam cleaning is generally applied for open equipment, walls and floors.

It is common practice for staff involved in clean-up operations to remove floor-drain grates and flush raw materials and product directly down the drain, believing that a subsequent screen or catch pot will trap all solids. However, when these materials enter the wastewater stream they are subjected to turbulence, pumping and mechanical screening. This results in the break down and release of soluble BOD, along with colloidal and possibly suspended grease solids. Subsequent removal of this soluble, colloidal and suspended organic matter can be far more complicated and expensive than the use of simple screens.

Cleaning agents that are used in food and drink industry are alkalis (sodium and potassium hydroxide, metasilicate, sodium carbonate), acids (nitric acid, phosphoric acid, citric acid, gluconic acid) composed cleaning agents containing chelating agents (EDTA, NTA, phosphates, polyphosphates, phosphonates) and surface-active agents.

| INTRODUC                |                                                                                                                                                                                                                  |                                                                                                                                                                                                           | HNIQU                                                                                                                                                                                                     | JES                                                                                                                                                                         | EI                                                                                                                                                     | MISSIO                                                                                                                                                                       | NS                                                                                                                            |                                                                                                                                                                                                           | MPAC                                                                                                                      | T                                                                                                                                    |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Manadement              |                                                                                                                                                                                                                  | ivities/<br>tement                                                                                                                                                                                        | Ground<br>water                                                                                                                                                                                           | Waste                                                                                                                                                                       | Energy                                                                                                                                                 | Accidents                                                                                                                                                                    | Noise                                                                                                                         | Monitoring                                                                                                                                                                                                | Closure                                                                                                                   | Installation<br>issues                                                                                                               |
| Cleaning & sanitation   | of strong o<br>chlorine co<br>hypochloro<br>more preva<br>pH than the<br>The main co<br>number of<br>further com<br>which are of<br>receiving w<br>The use of<br><i>Non-oxidiz</i><br>replication.<br>formaldehy | iocides ox<br>xidising ag<br>mpounds<br>us acid (th<br>alent in ind<br>e equivale<br>lisadvanta<br>other com<br>uplicated b<br>dangerous<br>vater.<br>ozone is a<br>ing biocide<br>These an<br>de/glutara | didise the b<br>gents such<br>(chlorine g<br>he active b<br>lustrial app<br>nt chlorine<br>ge of chlor<br>pounds an<br>by the form<br>to living o<br>also increa<br>es operate<br>re becomin<br>aldehyde. | pacterial c<br>as chlori<br>ias, chlori<br>iocide) in<br>blications<br>based co<br>rine based<br>d so actu<br>ation of "o<br>rganisms<br>sing for d<br>by chemi<br>ig commo | ne/bromin<br>ne dioxid<br>aqueous<br>due to th<br>ompound<br>d chemis<br>ally redu<br>chloramir<br>, and the<br>isinfectin<br>ically alte<br>on, and e | ne, ozone, a<br>e, sodium h<br>solution. E<br>e hypobrom<br>s.<br>try is the ab<br>ce the "effe<br>nes" and oth<br>discharge of<br>g purposes<br>ring the cel<br>xamples are | and hydr<br>hypochlo<br>Bromine<br>hous acid<br>hility of ch<br>ctive" ch<br>her orgar<br>of which<br>l structur<br>e quaterr | replication.<br>ogen peroxid<br>rite) relies up<br>based biocid<br>d species dise<br>norine to rea<br>lorine dose ra<br>no-halogen co<br>will be tightly<br>re in order to<br>nary ammoni<br>technology o | le. The upon the fo<br>es are als<br>sociating<br>ct with a<br>ate. This<br>ompound<br>controlle<br>prevent b<br>um salts | use of<br>ormation of<br>so becoming<br>at a higher<br>wide<br>situation is<br>ls, many of<br>ed within the<br>pacterial cell<br>and |
|                         | years. UV<br>viruses, wh<br>techniques<br>(no organo<br>The dose r<br>seconds.<br>reduce UV                                                                                                                      | light at 25<br>lich prever<br>includes,<br>halogens)<br>ate is mea<br>The actual<br>light effec                                                                                                           | 4 nm is rea<br>nts the cell<br>no storage<br>and is a s<br>sured in m<br>dose is de<br>tiveness) o                                                                                                        | adily abso<br>from rep<br>e or use o<br>imple tec<br>nilliwatts p<br>ependant<br>of the was                                                                                 | orbed by<br>licating.<br>f dangere<br>hnology v<br>oer squar<br>on the tra<br>stewater                                                                 | the cellular<br>The main a<br>bus chemica<br>with relative<br>e centimetr<br>ansmittance<br>stream. UV                                                                       | genetic i<br>dvantage<br>als, the a<br>ly low ca<br>e multipl<br>e (i.e. cor<br>/ light is a                                  | material withins<br>es of UV disination<br>absence of ha<br>apital and oper-<br>ied by the co<br>mpounds white<br>also an imme-<br>ie to re-infect                                                        | in bacteri<br>nfection c<br>armful by<br>erating cc<br>ntact time<br>ich can a<br>ediate rea                              | a and<br>over other<br>-products<br>osts.<br>e in<br>bsorb and                                                                       |
|                         |                                                                                                                                                                                                                  | ne bacteria                                                                                                                                                                                               | a/virus. Ar                                                                                                                                                                                               | ny apprec                                                                                                                                                                   | iable leve                                                                                                                                             | els of suspe                                                                                                                                                                 | nded so                                                                                                                       | must be ma<br>lids (hence d<br>ction.                                                                                                                                                                     |                                                                                                                           |                                                                                                                                      |
| <b>_</b>                | Air:                                                                                                                                                                                                             | Not appl                                                                                                                                                                                                  | icable.                                                                                                                                                                                                   |                                                                                                                                                                             |                                                                                                                                                        |                                                                                                                                                                              |                                                                                                                               |                                                                                                                                                                                                           |                                                                                                                           |                                                                                                                                      |
| Environmental<br>impact | Water:                                                                                                                                                                                                           |                                                                                                                                                                                                           | aters will co<br>I form the e                                                                                                                                                                             |                                                                                                                                                                             |                                                                                                                                                        |                                                                                                                                                                              | gents, p                                                                                                                      | roduct rinsed                                                                                                                                                                                             | from the                                                                                                                  | system and                                                                                                                           |
|                         | Land:                                                                                                                                                                                                            | No direc                                                                                                                                                                                                  | t impacts.                                                                                                                                                                                                |                                                                                                                                                                             |                                                                                                                                                        |                                                                                                                                                                              |                                                                                                                               |                                                                                                                                                                                                           |                                                                                                                           |                                                                                                                                      |
|                         | Waste:                                                                                                                                                                                                           | Not appl                                                                                                                                                                                                  | icable.                                                                                                                                                                                                   |                                                                                                                                                                             |                                                                                                                                                        |                                                                                                                                                                              |                                                                                                                               |                                                                                                                                                                                                           |                                                                                                                           |                                                                                                                                      |
|                         | Energy:                                                                                                                                                                                                          |                                                                                                                                                                                                           | , for examp                                                                                                                                                                                               |                                                                                                                                                                             |                                                                                                                                                        |                                                                                                                                                                              |                                                                                                                               | es utilizing s<br>ing systems                                                                                                                                                                             |                                                                                                                           |                                                                                                                                      |
|                         | Accidents                                                                                                                                                                                                        |                                                                                                                                                                                                           | of cleaning<br>nt system.                                                                                                                                                                                 | g chemica                                                                                                                                                                   | als. Leak                                                                                                                                              | age from e                                                                                                                                                                   | ffluent sy                                                                                                                    | vstem. Overl                                                                                                                                                                                              | oading of                                                                                                                 | feffluent                                                                                                                            |
|                         | Noise:                                                                                                                                                                                                           | Not appl                                                                                                                                                                                                  | icable.                                                                                                                                                                                                   |                                                                                                                                                                             |                                                                                                                                                        |                                                                                                                                                                              |                                                                                                                               |                                                                                                                                                                                                           |                                                                                                                           |                                                                                                                                      |
|                         | Applicatio<br>Question                                                                                                                                                                                           |                                                                                                                                                                                                           | >                                                                                                                                                                                                         | Cleanin                                                                                                                                                                     | g and Sa                                                                                                                                               | nitation                                                                                                                                                                     |                                                                                                                               |                                                                                                                                                                                                           |                                                                                                                           |                                                                                                                                      |
|                         | With the                                                                                                                                                                                                         | With the Application the operator should:                                                                                                                                                                 |                                                                                                                                                                                                           |                                                                                                                                                                             |                                                                                                                                                        |                                                                                                                                                                              |                                                                                                                               |                                                                                                                                                                                                           |                                                                                                                           |                                                                                                                                      |
|                         |                                                                                                                                                                                                                  | <ol> <li>supply the general Application requirements for Section 2.3 listed on page 25 for this aspect of<br/>the activities;</li> </ol>                                                                  |                                                                                                                                                                                                           |                                                                                                                                                                             |                                                                                                                                                        |                                                                                                                                                                              |                                                                                                                               |                                                                                                                                                                                                           |                                                                                                                           | aspect of                                                                                                                            |
|                         | Indicativ                                                                                                                                                                                                        | ,                                                                                                                                                                                                         | Requirer                                                                                                                                                                                                  | nents                                                                                                                                                                       |                                                                                                                                                        |                                                                                                                                                                              |                                                                                                                               |                                                                                                                                                                                                           |                                                                                                                           |                                                                                                                                      |
|                         | <i>.</i>                                                                                                                                                                                                         |                                                                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                                                             |                                                                                                                                                        |                                                                                                                                                                              |                                                                                                                               |                                                                                                                                                                                                           |                                                                                                                           |                                                                                                                                      |

BAT for cleaning & sanitation 1. The single most important factor is reducing wastewater strength in this sector is the adoption of dry clean-up techniques. Wherever possible raw materials and product should be kept out of the wastewater system.

Cont.

| INTRODUC                                       | CTIO    | N TEC                                                                                                                                                                                           | HNIQU                                                                                | JES                                                           | E                                                         | VISSIO                                                        | NS                                      | l                       | MPAC       | СТ           |
|------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------|-------------------------|------------|--------------|
| Wanadement                                     | terials | Activities/                                                                                                                                                                                     | Ground                                                                               | Waste                                                         | Energy                                                    | Accidents                                                     | Noise                                   | Monitoring              | Closure    | Installation |
| in                                             | puts    | abatement                                                                                                                                                                                       | water                                                                                |                                                               | - 35                                                      |                                                               |                                         | 9                       |            | issues       |
| Cleaning & sanitation                          |         | EXAMPLE - Da<br>Treating spills of<br>the drain.                                                                                                                                                |                                                                                      |                                                               | ice crean                                                 | n mix as sol                                                  | id waste                                | rather than             | washing t  | them down    |
| BAT for<br>cleaning &<br>sanitation<br>(cont.) |         | Taking this as th<br>achieve this and<br>include such me                                                                                                                                        | then ensu                                                                            | ure that a                                                    |                                                           |                                                               |                                         |                         |            |              |
|                                                | 2.      | Equipment desig                                                                                                                                                                                 | gn:                                                                                  |                                                               |                                                           |                                                               |                                         |                         |            |              |
|                                                |         | <ul> <li>wherever pra<br/>onto the floo</li> <li>removing as<br/>washed;</li> </ul>                                                                                                             | acticable, j<br>r should b                                                           | e modifie                                                     | d to elimi                                                | nate or red                                                   | uce the p                               | problem (ETI            | SPP GG1    | 54);         |
|                                                |         | <ul><li>ensuring that</li><li>that the catcl</li><li>optimisation</li><li>automatic wat</li></ul>                                                                                               | hpots are<br>of water p                                                              | in place o<br>ressure a                                       | during cle<br>at jets, no                                 | aning (for e<br>zzles and c                                   | orifices;                               |                         |            | catchpots);  |
|                                                |         | <ul> <li>Good housekeep</li> <li>installing tray</li> <li>sweeping, sh</li> <li>making sure</li> <li>providing con</li> <li>optimisation</li> <li>matching cle</li> <li>product sche</li> </ul> | vs to collect<br>novelling c<br>suitable d<br>nvenient, s<br>of cleanin<br>aning cyc | or vacuun<br>ry clean-<br>secure re<br>g schedu<br>le duratic | ning spilt<br>up equipi<br>ceptacles<br>les:<br>ns to the | material rat<br>ment is alwa<br>s for the coll<br>vessel size | her than<br>ays readi<br>lected wa<br>; | ily available;<br>aste. |            |              |
|                                                | 4.      | between pro<br>Management of                                                                                                                                                                    |                                                                                      | eaning:                                                       |                                                           |                                                               |                                         |                         |            |              |
|                                                |         | <ul> <li>Procedures t</li> <li>Trigger contr<br/>wash down v</li> </ul>                                                                                                                         | o ensure<br>ols should<br>vater.                                                     | that hose<br>I be used                                        | l on hand                                                 | held hoses                                                    |                                         |                         | minimise   | the use of   |
|                                                |         | <ul> <li>Use of high p</li> </ul>                                                                                                                                                               | pressure/lo                                                                          | ow volum                                                      | e system                                                  | S.                                                            |                                         |                         |            |              |
|                                                | 5.      | Cleaning chemic                                                                                                                                                                                 | als usage                                                                            | :                                                             |                                                           |                                                               |                                         |                         |            |              |
|                                                |         | <ul> <li>The operator<br/>solutions and<br/>too high and</li> </ul>                                                                                                                             | d their app                                                                          | lication, t                                                   | for examp                                                 | ole not setti                                                 | ng the co                               | oncentration            | of the che | emical agent |
|                                                | 6.      | Cleaning in Plac<br>dry product r<br>blowdown;                                                                                                                                                  |                                                                                      | efore the                                                     | start of th                                               | ne wash cyc                                                   | le by gra                               | avity draining          | ı, pigging | or air       |
|                                                |         | <ul> <li>pre-rinse to e</li> </ul>                                                                                                                                                              | enable ren                                                                           | naining p                                                     | roduct to                                                 | be recovered                                                  | ed for re-                              | -use or dispo           | sal;       |              |
|                                                |         | use of turbid                                                                                                                                                                                   | -                                                                                    |                                                               |                                                           |                                                               | -                                       | e                       |            |              |
|                                                |         | <ul> <li>optimal CIP  </li> </ul>                                                                                                                                                               | -                                                                                    |                                                               |                                                           |                                                               | • •                                     | of soiling;             |            |              |
|                                                |         | <ul> <li>automatic do</li> <li>internal recycles</li> </ul>                                                                                                                                     | -                                                                                    |                                                               |                                                           |                                                               | ions;                                   |                         |            |              |
|                                                |         | <ul> <li>recycle contr</li> </ul>                                                                                                                                                               | -                                                                                    |                                                               |                                                           |                                                               |                                         |                         |            |              |
|                                                |         | <ul> <li>continuous c</li> </ul>                                                                                                                                                                |                                                                                      | -                                                             |                                                           |                                                               |                                         |                         |            |              |
|                                                |         | <ul> <li>water-efficier</li> </ul>                                                                                                                                                              | -                                                                                    |                                                               |                                                           |                                                               |                                         |                         |            |              |
|                                                | 7.      | Sanitisation:                                                                                                                                                                                   |                                                                                      |                                                               |                                                           |                                                               |                                         |                         |            |              |
|                                                |         | <ul> <li>The operator<br/>alternatives,</li> </ul>                                                                                                                                              |                                                                                      |                                                               |                                                           |                                                               | en based                                | l oxidising bi          | ocides ov  | er the       |
|                                                | 8.      | Recycling of wat                                                                                                                                                                                | er and red                                                                           | covery of                                                     | cleaning                                                  | chemicals ·                                                   | - see Se                                | ction 2.2.2.2           |            |              |

| INTROD     |                     |                          | TECHNIQUES      |       |        | EMISSIONS |       |            | IMPACT  |                        |  |
|------------|---------------------|--------------------------|-----------------|-------|--------|-----------|-------|------------|---------|------------------------|--|
| Management | Materials<br>inputs | Activities/<br>abatement | Ground<br>water | Waste | Energy | Accidents | Noise | Monitoring | Closure | Installation<br>issues |  |

| Abatement<br>to air        | <b>2.3.11 Abatement of point so</b><br>The nature of the emissions from each exa<br>comprise: |     |       |             | general they |
|----------------------------|-----------------------------------------------------------------------------------------------|-----|-------|-------------|--------------|
| Nature of the<br>emissions | Activity                                                                                      |     | Pollu | utant       |              |
|                            |                                                                                               | VOC | Odour | Particulate | SOx, NOx,    |
|                            | Receiving and handling of raw                                                                 |     | 1     | 1           |              |

|                                                         | VOC          | Odour        | Particulate  | SOx, NOx, |
|---------------------------------------------------------|--------------|--------------|--------------|-----------|
| Receiving and handling of raw materials (section 2.3.1) |              | ~            | ~            |           |
| Preparation of raw materials                            |              |              |              |           |
| Dry cleaning                                            |              |              | $\checkmark$ |           |
| Peeling                                                 | $\checkmark$ | $\checkmark$ |              |           |
| Mixing (of dry powders)                                 |              |              | ✓            |           |
| Extrusion                                               | $\checkmark$ | $\checkmark$ |              |           |
| Heat processing using steam or water                    |              |              |              |           |
| Blanching                                               | $\checkmark$ | $\checkmark$ |              |           |
| Evaporation                                             | $\checkmark$ | $\checkmark$ | ✓            |           |
| Pasteurisation/Sterilisation                            |              | $\checkmark$ |              |           |
| Heat processing using hot air                           |              |              |              |           |
| Drying                                                  | $\checkmark$ | $\checkmark$ | $\checkmark$ |           |
| Baking and roasting                                     |              | $\checkmark$ |              | ✓         |
| Frying                                                  | $\checkmark$ | ✓            |              | ✓         |
| Grinding and milling                                    |              |              | ✓            |           |
| Solvent extraction                                      | $\checkmark$ |              |              |           |
| Combustion plant                                        |              |              |              | ✓         |
| Effluent treatment systems                              |              | ✓            |              |           |

The distinction between emissions of VOC/odour and particulate/odour are not always clear. Where odour (see section 2.3.15) may be an issue, the cause will typically be emissions of VOC (sometimes at low concentrations). Measures taken to prevent or reduce VOC will also lead to a reduction in odour and similarly for particulate.

Application Form Question 2.3 (cont.)

Control of Point Source Emissions to Air

## With the Application the operator should:

- 1. supply the general Application requirements for Section 2.3 on page 25 for control and abatement equipment; and in addition
- 2. describe the measures and procedures in place and proposed to prevent or reduce point source emissions to air. This should include, but is not limited to, the general measures described below.
- 3. justify where any of the measures are not employed. Guidance on abatement techniques for point source emissions to air can be found in References (see Ref. 10).
- 4. where VOCs are released, the identification of the main chemical constituents of the emissions and assessment of the fate of these chemicals in the environment. These steps will be carried out as in response to Sections 3.1 and 4.1 but need to be understood here in order to demonstrate that the controls are adequate.

## Indicative BAT Requirements

## 2.3.11.1 General techniques

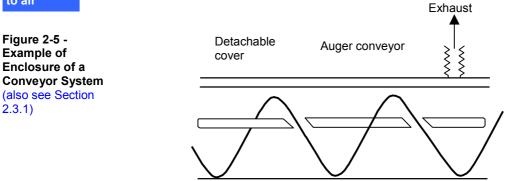
- 1. The operator should provide the following with the application as appropriate. If in there is doubt, the degree of detail required should be established in pre-application discussions:
  - a description of the abatement equipment for the activity;

BAT for abatement of point sources to air

| INTROD                                                                                          |                                                                                                                                                                                                                                                                                                                                               | TECHNIQ                                                                                                                                                                                                                         | IES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F                                                                                                                                                                                                                                                                                                                                  | MISSIO                                                                                                                                                                                                                                                                                                                                       | NS                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                     | MPAC                                                                                                                                                                                                                                                          | T.                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                               |
| Management                                                                                      | inputs abate                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                 | Waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Energy                                                                                                                                                                                                                                                                                                                             | Accidents                                                                                                                                                                                                                                                                                                                                    | Noise                                                                                                                                                                                                                                                                                  | Monitoring                                                                                                                                                                                                                                                                                                            | Closure                                                                                                                                                                                                                                                       | issues                                                                                                                                                                                                                                                        |
| Management<br>Abatement<br>to air<br>BAT for<br>abatement of<br>point sources<br>to air (cont.) | <ul> <li>the is of V(2,3,1) VOC</li> <li>mea</li> <li>mea</li> <li>excession</li> <li>dam</li> <li>2. The oper has been to be su</li> <li>3. Where a emission abnormademons neverther also be</li> <li>4. Steam p should be the concording the concording temperation of the concording temperation of the concording temperation.</li> </ul> |                                                                                                                                                                                                                                 | ment of the ication of the ications are the secure the secure the secure of the secur | emical co<br>e fate of a<br>constitue<br>e low);<br>ity with w<br>s adequa<br>vel polluti<br>most ser<br>estrial eco<br>hat an ap<br>n in Techn<br>ispersion<br>ould also<br>iour. Pro-<br>er short p<br>of occurre-<br>erious dan<br>ses from<br>ble plume<br>environme<br>scrubber<br>and preve<br>al buoyar<br>ficant environme | these chem<br>nt compone<br>hich the rec<br>te dispersic<br>on threshol<br>ositive recep<br>osystems.<br>propriate as<br>nical Guidar<br>modelling a<br>recognise t<br>cess upsets<br>periods shou<br>ence, the he<br>nage to hea<br>for example<br>formation i<br>entally harm<br>can be hea<br>ent immedia<br>ncy of the pl<br>vironmental | of the em<br>licals in the<br>ents may<br>quired pe<br>on of the<br>ds and lin<br>otor, be it<br>ssessme<br>nce Note<br>as descri<br>he chimr<br>s or equij<br>uld be as<br>eight of the<br>alth. The<br>e, evapora<br>n the vici<br>nful substa<br>ated by the<br>te conde<br>lume. W | ne environme<br>not always b<br>rformance is<br>emission(s) f<br>mit national a<br>human heal<br>nt of vent an<br>D1 (see Ref<br>bed in Section<br>he chimney of<br>e chimney of<br>impact of fur<br>ators or wet<br>nators or wet<br>ances by the<br>he use of wa<br>nsation on th<br>here there is<br>il substances | ent (refer<br>be practic<br>delivere<br>to preven<br>and trans<br>lth, soil of<br>d chimne<br>(.14). and<br>on 4.1.<br>s an eme<br>e giving ri<br>en if the a<br>or vent sh<br>igitive em<br>scrubber<br>ent. This<br>e conden<br>ste heat fro<br>a no availa | or mixtures<br>to section<br>cable for<br>d;<br>t<br>boundary<br>r terrestrial<br>ey heights<br>i may need<br>ergency<br>se to<br>applicant can<br>hould<br>issions can<br>vents<br>is to prevent<br>sing water<br>to raise the<br>om the vent.<br>able waste |
|                                                                                                 | <ol> <li>Air move<br/>significat<br/>doors w</li> <li>Enclosure</li> <li>Largely<br/>The volu<br/>associat<br/>odorous<br/>minimisi<br/>specific</li> </ol>                                                                                                                                                                                   | Fechniques for<br>ements around loant source of dust<br>ill reduce wind eff<br>the volume of air<br>ume of air has imp<br>ed equipment suc<br>or polluted air is<br>ng the amount (a<br>units identified as<br>requiring abatem | ading/unic<br>emissions<br>ects.<br>involved c<br>blications<br>ch as fans<br>therefore<br>nd consec<br>being a s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | bading an<br>bading an<br>determine<br>not only f<br>s, ducting<br>importan<br>quently co<br>source of                                                                                                                                                                                                                             | d transfer p<br>ation of the<br>es the degre<br>or the final<br>, pressure o<br>t in either el<br>post) of the a<br>pollution sh                                                                                                                                                                                                             | points for<br>plant and<br>ee of diffic<br>size of al<br>drop losse<br>liminating<br>batemen<br>nould be i                                                                                                                                                                             | d installation<br>culty in dealin<br>patement pla<br>es etc. Optin<br>the need to<br>t technology                                                                                                                                                                                                                     | of roll do<br>ng with a<br>nut but als<br>num con<br>treat the<br>Enclos                                                                                                                                                                                      | wn or bi-fold<br>ir emissions.<br>so for the<br>tainment of<br>e air or in<br>ure of<br>se air                                                                                                                                                                |
| Figure 2-4 -<br>Example of<br>Enclosure of a<br>Food<br>Processing<br>Unit                      |                                                                                                                                                                                                                                                                                                                                               | Conveyor <u>→</u><br>Exhaust <sup>▲</sup>                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Proce<br>unit,<br>e.g. cru                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                              | ← Ac<br>do                                                                                                                                                                                                                                                                             | cess<br>or                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                               | Cont.                                                                                                                                                                                                                                                         |



Conveyor


►

58

Drain for washing effluent

| INTROD     |                     |            |                     | HNIQU           |       |        | VISSIO    |       |            | MPAC    |                        |
|------------|---------------------|------------|---------------------|-----------------|-------|--------|-----------|-------|------------|---------|------------------------|
| Management | Materials<br>inputs | Act<br>aba | tivities/<br>tement | Ground<br>water | Waste | Energy | Accidents | Noise | Monitoring | Closure | Installation<br>issues |

#### Abatement to air



### Table 2-2 - Abatement Options for Specified Pollutants

| Activity                                          | Abatem               | ent options for          | specified pollu | tants                |
|---------------------------------------------------|----------------------|--------------------------|-----------------|----------------------|
| Adding                                            | VOC                  | Odour                    | Particulate     | SOx, NOx,            |
| Receiving and handling of raw materials (#1) (#2) |                      |                          | Cy, FF          |                      |
| Preparation of raw materials                      |                      |                          |                 |                      |
| Dry cleaning                                      |                      |                          | Cy, FF          |                      |
| Peeling                                           | C, TO, B             | 0, CO                    |                 |                      |
| Mixing (of dry powders)                           |                      |                          | Cy, FF          |                      |
| Extrusion                                         | C, TO, B             | 0, CO                    |                 |                      |
| Heat processing using steam or water<br>Blanching |                      |                          |                 |                      |
| Evaporation                                       | C, TO, B             | 0, CO                    | Cy, FF          |                      |
| Pasteurisation/Sterilisation                      |                      | Ad, C, TO,<br>BO, CO     |                 |                      |
| Heat processing using hot air                     |                      | ,                        |                 |                      |
| Drying                                            | C, TO, B             | O, CO                    | Cy, FF          |                      |
| Baking and roasting                               |                      | Ab, Ad, C,<br>TO, BO, CO |                 | See section 2.3.11.3 |
| Frying                                            | Ab, Ad, C, TC        | D, BO, CO                |                 | See section 2.3.11.3 |
| Grinding and milling                              |                      |                          | Cy, FF          |                      |
| Solvent extraction                                | Ad, C, TO, BO,<br>CO |                          |                 |                      |
| Combustion plant                                  |                      |                          |                 | See section 2.3.11.4 |
| Effluent treatment systems                        |                      | Ad, C, TO,<br>BO, CO     |                 |                      |
|                                                   | See T                | able 2-3 for Abat        | ement Options   | key                  |
|                                                   |                      |                          | •               |                      |

#1 In addition to enclosure, emissions from conveyor systems can be prevented by minimising free fall distances and reducing velocities.#2 Gravity unloading of for example grain from the delivering vehicle to a bunker can give rise to significant dust emissions. Using a choke flow system will reduce these emissions.

| INTROD     |                     |                          |                 |       |        | EMISSIONS |       |            | IMPACT  |                        |  |
|------------|---------------------|--------------------------|-----------------|-------|--------|-----------|-------|------------|---------|------------------------|--|
| Management | Materials<br>inputs | Activities/<br>abatement | Ground<br>water | Waste | Energy | Accidents | Noise | Monitoring | Closure | Installation<br>issues |  |

| Key | Name                    | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ab  | Absorption              | Suitable for high flow, low concentrations (1-200 mg/m <sup>3</sup> VOC), low temperature gas streams, where the pollutant is chemically reactive (or solu in the case of VOC contaminants). A common use is the treatment of contaminated ventilation air. Water supply and effluent disposal facilities mube available.                                                                                                                                                                                                                                  |
| Ad  | Adsorption              | The humid nature of many food waste streams counts against carbon<br>adsorption as a technology because the polar nature of the common<br>adsorbents will preferentially adsorb water vapour.                                                                                                                                                                                                                                                                                                                                                              |
| С   | Condensation            | Air streams from for example, cookers and evaporators can contain volumes water vapour, which are much greater than the volume of air and non-<br>condensables. If the air stream is to be abated by thermal oxidation, the required energy to oxidise a wet stream containing 1kg water / kg dry air (at 100 °C) is approximately 2.6 times the energy requirement for the equivalen dry stream. Condensation is a useful pre-treatment, which in addition to reducing the fuel requirement and the overall size of oxidiser, will also provid abatement. |
| ТО  | Thermal oxidation       | For food and drink sector applications this will usually require the addition of<br>supplementary fuel to support the combustion process. Even for VOC<br>abatement purposes it is unlikely that any food applications will be autotherr<br>The operator can offset the cost of the supplementary fuel when there is a<br>requirement elsewhere on site for the waste heat that is generated.                                                                                                                                                              |
| BO  | Biological<br>oxidation | Typically applied to air streams with VOC < 1500 mg/m <sup>3</sup> . Requires a long residence time typically > 30s. For a gas flow of 150000 Nm <sup>3</sup> /hr, a reactor volume of approximately 1250 m <sup>3</sup> would be required. The available surface area maybe the limiting factor. Variability in gas flowrate, gas composition i terms of available organic constituents, pH, temperature and humidity may b difficult to manage.                                                                                                          |
| CO  | Catalytic oxidation     | Suitable for airflow range 150 - 70,000m <sup>3</sup> /h. The catalyst has an upper temperature limit and an increase in VOC concentration may increase the temperature beyond the limit.                                                                                                                                                                                                                                                                                                                                                                  |
| Су  | Cyclones                | Relatively cheap and reliably. Not effective against particle sizes <10um. F<br>example, exhaust from a spray dryer is loaded with dried powder, which is<br>typically passed through a cyclone. The outlet air from the cyclone may<br>contain dust particles up to 200 mg/m <sup>3</sup> , which may require additional<br>measures, for example fabric filters.                                                                                                                                                                                         |
| FF  | Fabric filters          | Collected dust can be returned to the process or used in animal feed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

BAT for abatement of point sources to air (cont.)

Abat to ai

#### 2.3.11.3 Processes using heat

 Energy efficient techniques such as heat recovery systems on indirect fired ovens and fryers, utilise exhaust air for pre heating and also recycle the exhaust gas to the heater. The combustion of the recycled exhaust gas is a technique for reducing NOx emissions in the release to atmosphere, see Figure 2-3.

#### 2.3.11.4 Combustion processes

8. Where there is an on-site combustion plant other guidance is also relevant. For plants greater than 50 MW operators should consult the IPPC guidance on power generation (reference S2 1.01 and supplement S3 1.01) and the operators of plants of 20-50 MW should consult the Local Authority Air Pollution Control guidance. On IPPC installations this guidance will be generally applicable to plant under 20 MW also. For incineration plant S2 5.01 Waste Incineration should be consulted.

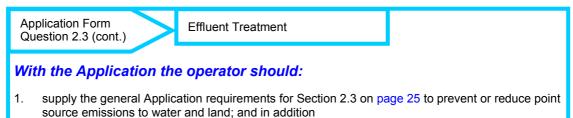
There may also be other sources of combustion gases such as direct gas fired drying equipment. In such cases low NOx burners should be employed.

For the relationship of pollution control on combustion plant to energy efficiency issues and any Climate Change Levy agreements see Section 2.7.

For existing activities, the operator should implement any agreed techniques to a timescale agreed with the Regulator.

| INTROD                       | UCTION TEC                                                                                                                                                                                                                                                                                                                                                                                                                                         | HNIQU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JES                    | E                      | MISSIO                      | NS                     |                                | MPAC                   | T                      |  |  |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|-----------------------------|------------------------|--------------------------------|------------------------|------------------------|--|--|
| Management                   | Materials Activities/<br>inputs abatement                                                                                                                                                                                                                                                                                                                                                                                                          | Ground<br>water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Waste                  | Energy                 | Accidents                   | Noise                  | Monitoring                     | Closure                | Installation<br>issues |  |  |
| Effluent<br>treatment        | 2.3.12 Abatement of <u>point source</u> emissions to surface water <sup>1</sup> and sewer                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                        |                             |                        |                                |                        |                        |  |  |
|                              | 2.3.12.1 Nature                                                                                                                                                                                                                                                                                                                                                                                                                                    | of the eff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | fluent                 |                        |                             |                        |                                |                        |                        |  |  |
| Summary of<br>the activities | of other general sour<br>blowdown from s<br>once-through coor<br>backwash from re<br>freezer defrost w<br>stormwater run-o                                                                                                                                                                                                                                                                                                                         | <ul> <li>The nature of the emissions from each example activity is given in sections 2.3.1 to 2.3.11. A number of other general sources are identified in section 2.2.3. Others include:</li> <li>blowdown from steam boilers;</li> <li>once-through cooling water or bleed from closed loop cooling water systems;</li> <li>backwash from regeneration of water treatment plant;</li> <li>freezer defrost water;</li> <li>stormwater run-off.</li> </ul>                                                                                                                                                                                                                                                                                         |                        |                        |                             |                        |                                |                        |                        |  |  |
|                              | and vegetable sub-s<br>of raw material proce<br>seasonal basis. Wa<br>composition. The wa<br>which is often the lar                                                                                                                                                                                                                                                                                                                                | Most of the water not used as an ingredient ultimately appears in the wastewater stream. In the fruit<br>and vegetable sub-sector, for example, in the order of 10m <sup>3</sup> of wastewater is generated for every tonne<br>of raw material processed. Wastewater flowrates may be very variable on a diurnal, weekly or<br>seasonal basis. Wastewater from the food and drink sector is notable for its extreme variability in<br>composition. The wastewater profile is largely dependent on production patterns and when cleaning,<br>which is often the largest water use, takes place. In some categories (e.g. sugar beet) processing<br>takes place on a campaign basis and there will be little or no wastewater for part of the year. |                        |                        |                             |                        |                                |                        |                        |  |  |
|                              | waste minimisation to 2.3.12.7). <i>It is, how</i>                                                                                                                                                                                                                                                                                                                                                                                                 | Substantial reductions in the volume of wastewater generated in this Sector can be achieved through waste minimisation techniques (see Section 2.2.3) and Tertiary Treatment methods (see Section 2.3.12.7). It is, however, imperative that water conservation measures do not lead to unsatisfactory levels of cleanliness, hygiene or product quality.                                                                                                                                                                                                                                                                                                                                                                                         |                        |                        |                             |                        |                                |                        |                        |  |  |
|                              | Wastewater from the<br>contain some substa<br>These include:                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                        |                             |                        |                                |                        |                        |  |  |
|                              | <ul><li>salinity where lar</li><li>pesticide residue</li></ul>                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s of salt a            | are used               | (e.g. picklin               | g, chees               | emaking);                      |                        |                        |  |  |
|                              | <ul> <li>residues and by-</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                               | products fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | om the us              | se of che              | mical disinfe               | ection teo             | chniques;                      |                        |                        |  |  |
|                              | <ul> <li>some cleaning pr</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                               | roducts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                        |                             |                        |                                |                        |                        |  |  |
|                              | Typically food proces<br>100 times stronger th<br>BOD may be as low<br>and is therefore an in<br>is:                                                                                                                                                                                                                                                                                                                                               | han domest<br>as 100 mg/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tic sewag<br>/I. BOD i | e. There<br>s directly | e are, of cou<br>associated | irse, exc<br>with leve | eptions and i<br>els of produc | n some c<br>t in the w | ases the<br>astewater  |  |  |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Constituent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                        | kg BOD/kg                   | food                   |                                |                        |                        |  |  |
|                              | Carbohydr                                                                                                                                                                                                                                                                                                                                                                                                                                          | rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                        | 0.65                        |                        | _                              |                        |                        |  |  |
|                              | Fats                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                        | 0.89                        |                        | _                              |                        |                        |  |  |
|                              | Protein         1.03           Whilst relatively high levels are inevitable in many cases, preventing raw materials and wastes from unnecessarily entering the wastewater system and optimising chemical use can make a significant difference. The excessive or inappropriate use of cleaning chemicals may also contribute to high BOD and COD levels. Surfactants and common acid detergents have a BOD in the order of 0.65 kg/kg of chemical. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                        |                             |                        |                                |                        |                        |  |  |
| Summary of                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Suspended solids concentrations in food processing wastewaters vary from negligible to as high as 120,000 mg/l. Levels of several thousand mg/l are not uncommon.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                        |                             |                        |                                |                        |                        |  |  |
| the activities<br>(cont.)    | Wastewater from the dairy, meat, fish, baking and edible oil extraction sub-sectors and from the manufacture of oily foods such as margarine and salad dressings has high concentrations of fats, oils and greases (FOG). FOG may be "free" i.e. physically separate from the aqueous phase or emulsified.                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                        |                             |                        |                                |                        |                        |  |  |
|                              | Food processing was<br>Factors affecting was                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                        | y alkaline (p               | oH 11) to              | the highly a                   | cidic (pH              | 3.5).                  |  |  |

<sup>1</sup> Surface waters means controlled waters (Water Resources Act 1991) but excludes ground waters (waters contained in under ground strata) which are covered in Section 2.4


In the PPC regulations Regulation 2(2), references to an emission into water include an emission into a sewer (within the meaning of section 219(1) of the Water Industry Act 1991). Consequently pollution control measures can be applied to discharges to sewer.

| INTRODUCTION TECH                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | HNIQUES                  |                 | EMISSIONS |        |           | IMPACT |            |         |                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------|-----------------|-----------|--------|-----------|--------|------------|---------|------------------------|
| Management                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Materials<br>inputs | Activities/<br>abatement | Ground<br>water | Waste     | Energy | Accidents | Noise  | Monitoring | Closure | Installation<br>issues |
| <ul> <li>the natural pH of the raw material;</li> <li>pH adjustment of flaming water to prevent raw material deterioration;</li> <li>use of caustic or acid solutions in processing operations;</li> <li>use of caustic or acid solution in cleaning operations;</li> <li>acidic waste streams (e.g. acid whey);</li> <li>acid-forming reactions in the wastewater (e.g. high yeast content wastewater, lactic and formic acids from degrading milk content);</li> </ul> |                     |                          |                 |           |        |           |        |            |         | I formic               |

nature of raw water source (hard/soft).

Inadequately contained spills of acid or alkaline materials and operator error can result in excessively high or low pH that causes problems for wastewater treatment.

The presence of pathogenic organisms in the wastewater may be a consideration, particularly where meat or fish are being processed.



- include, where appropriate, off site treatment in the description of the wastewater treatment system for the activity;
- 3. provide, where effluent is discharged, a justification for not cleaning the effluent to a level at which it can be reused (e.g. by ultrafiltration where appropriate);
- 4. describe measures taken to increase the reliability with which the required control and abatement performance is delivered (there may be a biological plant susceptible bulking or poisoning what measures ensure reliability?, heavy metals are measured only occasionally what techniques ensure that they are controlled all the time? etc.);
- 5. identify the main chemical constituents of the treated effluent (including the make-up of the COD) and assessment of the fate of these chemicals in the environment. These steps will be carried out as in response to Sections 3.1 and 4.1 but need to be understood here in order to demonstrate that the controls are adequate. This applies whether treatment is on- or off-site;
- 6. identify the toxicity of the treated effluent (see Section 2.10). Until the Regulator's toxicity guidance is available, this should, unless already in hand, normally be carried out as part of an improvement programme;
- 7. where there are harmful substances or levels of residual toxicity, identify the causes of the toxicity and the techniques proposed to reduce the potential impacts;
- 8. consider of whether the effluent flow is sufficient to fall within the requirements of the Urban Waste Water Treatment Directive.

Cont.

| INTROD                                                    | UCTIC                                                                                                                                                                                                                                                                         | N TEC                                                                                                                                                                                     | HNIQU                                                                                                                         | JES                                                                                                                     | EMISSIONS                                                                                                  |                                                                                                                                       |                                                            | IMPACT                                                                                                              |                                                                                              |                                                                     |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Management                                                | Materials<br>inputs                                                                                                                                                                                                                                                           | Activities/<br>abatement                                                                                                                                                                  | Ground<br>water                                                                                                               | Waste                                                                                                                   | Energy                                                                                                     | Accidents                                                                                                                             | Noise                                                      | Monitoring                                                                                                          | Closure                                                                                      | Installation<br>issues                                              |
| Effluent<br>treatment<br>BAT for<br>effluent<br>treatment | <ul> <li>The operator should complete any detailed studies required into abatement or control opti (see item 3 in Section 2.3) as an improvement condition to a timescale to be agreed with t Regulator but in any case within the timescale given in Section 1.1;</li> </ul> |                                                                                                                                                                                           |                                                                                                                               |                                                                                                                         |                                                                                                            |                                                                                                                                       |                                                            |                                                                                                                     |                                                                                              |                                                                     |
|                                                           |                                                                                                                                                                                                                                                                               | <ul> <li>a description</li> <li>justification</li> <li>ultrafiltration</li> <li>the identification</li> </ul>                                                                             | n of the wa<br>for not clea<br>where ap<br>ation of the<br>ssessmen<br>atment is o<br>n of the tox<br>are harmf               | astewater<br>aning the<br>propriate<br>e main che<br>t of the fa<br>n or off si<br>cicity of the<br>ful substa          | effluent t<br>;<br>emical co<br>te of thes<br>te;<br>e treated                                             | o a level by<br>onstituents c<br>se chemical<br>effluent;                                                                             | which it<br>of the tre<br>s in the a                       | can be reuse<br>ated effluent<br>aquatic envir                                                                      | (the mak<br>onment.                                                                          | e up of the<br>This applies                                         |
|                                                           | <b>2.3</b> .*                                                                                                                                                                                                                                                                 | <ul> <li>the measure</li> <li>12.2 Genera</li> </ul>                                                                                                                                      | es to increa<br>I Water 1                                                                                                     |                                                                                                                         | -                                                                                                          |                                                                                                                                       | e require                                                  | d performan                                                                                                         | ce is deliv                                                                                  | ered.                                                               |
|                                                           | 3.                                                                                                                                                                                                                                                                            | <ul> <li>techniques t<br/>implemented</li> <li>ultimately, s<br/>statutory and<br/>as treatmen<br/>should be us<br/>and alkaline<br/>streams and</li> </ul>                               | nould be m<br>to minimise<br>d, see Sec<br>urplus wat<br>d non-state<br>t will be m<br>sed where<br>streams.<br>d dilution, b | inimised<br>e contami<br>tions 2.3.<br>er is likely<br>utory obje<br>ore efficie<br>possible<br>Also biolo<br>oy mixing | and wast<br>nation ris<br>12.3 and<br>to need<br>ctives).<br>nt. How<br>to avoid<br>ogical tre<br>streams, | te water reu<br>sk of proces<br>2.3.12.4;<br>treatment te<br>Generally e<br>ever, the pro<br>adding furth<br>atment can<br>can assist | o meet t<br>ffluent st<br>operties<br>occasion<br>treatmer | ecycled (see<br>ace water, sh<br>he requireme<br>treams shoul<br>of dissimilar<br>nicals, e.g. ne<br>nally be inhib | Section 2<br>nould be<br>ents of BA<br>d be kept<br>waste stru-<br>eutralising<br>ited by co | 2.2.3).<br>AT (and<br>separate<br>eams<br>waste acid<br>oncentrated |
|                                                           | 4.                                                                                                                                                                                                                                                                            | With regard to E<br>IPPC the prever<br>be made at reas<br>water, the adeq<br>substances mus<br>found in Refere                                                                            | BOD the na<br>ntion or rec<br>sonable co<br>uacy of the<br>st also be o                                                       | ature of th<br>duction of<br>ost should<br>e plant to<br>considere                                                      | e receivi<br>BOD is<br>be carrie<br>minimise<br>d. Guida                                                   | ng water sh<br>also subject<br>ed out. Furt<br>e the emissio                                                                          | iould be<br>t to BAT<br>hermore<br>on of spe               | taken into ac<br>and further r<br>e, irrespective<br>ecific persiste                                                | count. H<br>eductions<br>of the re<br>ent harmfu                                             | lowever, in<br>which can<br>ceiving<br>ul                           |
|                                                           | 5.                                                                                                                                                                                                                                                                            | <ol> <li>All emissions must be controlled to avoid breach of water quality standards, (see<br/>Calculations and/or modelling should be supplied to demonstrate this, (see Sect</li> </ol> |                                                                                                                               |                                                                                                                         |                                                                                                            |                                                                                                                                       |                                                            |                                                                                                                     |                                                                                              |                                                                     |
|                                                           | 6.                                                                                                                                                                                                                                                                            | <ul><li>Where effluent i</li><li>all appropria<br/>example three</li></ul>                                                                                                                | ate measur                                                                                                                    | res have b                                                                                                              | been take                                                                                                  | en to reduce                                                                                                                          | effluent                                                   | and volume                                                                                                          | -                                                                                            |                                                                     |
|                                                           |                                                                                                                                                                                                                                                                               | substance to                                                                                                                                                                              | treated of the recei                                                                                                          | on site, ba<br>ving wate                                                                                                | ased on r<br>r;                                                                                            | eduction of                                                                                                                           | load (no                                                   | t concentrati                                                                                                       | on) of ead                                                                                   | ch                                                                  |
|                                                           |                                                                                                                                                                                                                                                                               | <ul> <li>the probabil<br/>intermediate</li> <li>a suitable m<br/>potential inh</li> </ul>                                                                                                 | e sewage p<br>onitoring p                                                                                                     | oumping s<br>programm                                                                                                   | tations is<br>e for emi                                                                                    | s acceptably<br>issions to se                                                                                                         | / low;<br>ewer, tak                                        |                                                                                                                     |                                                                                              |                                                                     |
|                                                           | 2.3.                                                                                                                                                                                                                                                                          |                                                                                                                                                                                           |                                                                                                                               |                                                                                                                         |                                                                                                            | and Drink                                                                                                                             |                                                            |                                                                                                                     |                                                                                              |                                                                     |
|                                                           |                                                                                                                                                                                                                                                                               | following paragra<br>ities. Further de                                                                                                                                                    |                                                                                                                               |                                                                                                                         |                                                                                                            |                                                                                                                                       |                                                            |                                                                                                                     | echnically                                                                                   | y associated                                                        |
|                                                           |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                           |                                                                                                                               |                                                                                                                         |                                                                                                            |                                                                                                                                       |                                                            |                                                                                                                     |                                                                                              | Cont.                                                               |

| INTRODU                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S EMISSIONS                                                                                                                                                                                 | IMPACT                                                                                                                                    |  |  |  |  |  |  |  |  |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|                                  | aterials Activities/ Ground ,<br>nputs abatement water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Waste Energy Accidents Noise                                                                                                                                                                | Monitoring Closure Installation issues                                                                                                    |  |  |  |  |  |  |  |  |
| Effluent<br>treatment<br>BAT for | nent recycling the treated wastewater in a partially- or fully-closed system (see Section 2.2.3). The operator should justify the choice and performance of the effluent management system for the plant against the following factors. See Figure 2-6 for a schematic representation of effluent treatment                                                                                                                                                                                                                                                 |                                                                                                                                                                                             |                                                                                                                                           |  |  |  |  |  |  |  |  |
| effluent                         | Classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Objective                                                                                                                                                                                   | Techniques                                                                                                                                |  |  |  |  |  |  |  |  |
| treatment<br>(cont.)             | Opportunities to reduce waste water loading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | To keep raw materials and<br>product out of the wastewater<br>stream (see Section 2.3.12.2)<br>Reduce fluctuations in effluent<br>flow and strength<br>Prevent damage to treatment<br>plant | Dry Cleaning<br>Installation and maintenance<br>of drain catchpots<br>Flow equalisation<br>Diversion tanks<br>Screening<br>Centrifugation |  |  |  |  |  |  |  |  |
|                                  | Primary treatment<br>Section 2.3.12.5<br>At locations where the wastewar<br>is discharged to sewer, there is                                                                                                                                                                                                                                                                                                                                                                                                                                                | Removal of gross solids and gross contaminants such as                                                                                                                                      |                                                                                                                                           |  |  |  |  |  |  |  |  |
|                                  | usually no treatment beyond the primary stage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Removal of suspended solids                                                                                                                                                                 | Gravity settlement<br>Air Flotation                                                                                                       |  |  |  |  |  |  |  |  |
|                                  | Secondary treatment<br>Section 2.3.12.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Removal of BOD<br>Sludge treatment and disposal                                                                                                                                             | Aerobic treatment<br>Anaerobic treatment<br>Thickening and dewatering                                                                     |  |  |  |  |  |  |  |  |
|                                  | Tertiary treatment<br>Section 2.3.12.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Water quality standards and recycling of water                                                                                                                                              | Macrofiltration<br>Membranes                                                                                                              |  |  |  |  |  |  |  |  |
|                                  | 2.3.12.4 Preliminary Tech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | iques                                                                                                                                                                                       |                                                                                                                                           |  |  |  |  |  |  |  |  |
|                                  | 8. Wherever possible raw materials and product should be kept out of the wastewater system (se Section 2.3.12.2). After dry clean up techniques, the next measure is the installation of drain catchpots and screens. Where gross FOG (Fat Oil Grease) is found wastewater drainage systems should be equipped with appropriately designed grease traps and gratings to prevent sewer blockages. It is particularly important that these are regularly inspected, emptied and maintained, with cleaning taking place in an area draining to the foul sewer. |                                                                                                                                                                                             |                                                                                                                                           |  |  |  |  |  |  |  |  |
|                                  | Flow balancing and equalisatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n:                                                                                                                                                                                          |                                                                                                                                           |  |  |  |  |  |  |  |  |
|                                  | from processing or the short<br>rates and composition forwa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | palancing refers to either the combini<br>time accumulation of wastewater to<br>rd feeding to the effluent treatment p<br>ling tank or pond and pumping equip                               | minimise the variability of flow rocesses. Equalisation                                                                                   |  |  |  |  |  |  |  |  |

retention times of 6-12 hours). Buffer storage or balancing tanks should normally be provided to cope with the general variability in flow and composition of wastewaters, or to provide corrective treatment, e.g. pH control, chemical conditioning. If no balancing is provided, the operator should show how peak loads are

the fluctuations in waste water flow through the effluent treatment plant. The tanks should have capacity to provide uniform flow throughout the typical 24 hour cycle period (typical hydraulic

Flow equalisation has the advantage that subsequent treatment systems may be smaller (since they are designed for the average flow and not the peak) and will not be subjected to shock loads or variations in the feed rate. Equalisation allows the best use of the complementary nature of existing chemicals within the individual waste water streams to enable the final waste water to comply with regulated limits. For example, where individual unit operations are batch and discharges are intermittent, this may result in considerable variations in pH or strength of the final waste water. Measures can include the balancing of acid and alkali streams, such as spent ion exchange regenerants, or the dilution of high strength streams with lower strength streams.

#### **Diversion tanks**

10. The operator should describe appropriate contingency measures for accidental discharges from the processes that could prove detrimental to the wastewater treatment plant.

If a diversion tank is not provided, the operator should show how potentially detrimental streams are handled without adversely affecting the wastewater treatment plant.

handled without overloading the capacity of the wastewater treatment plant

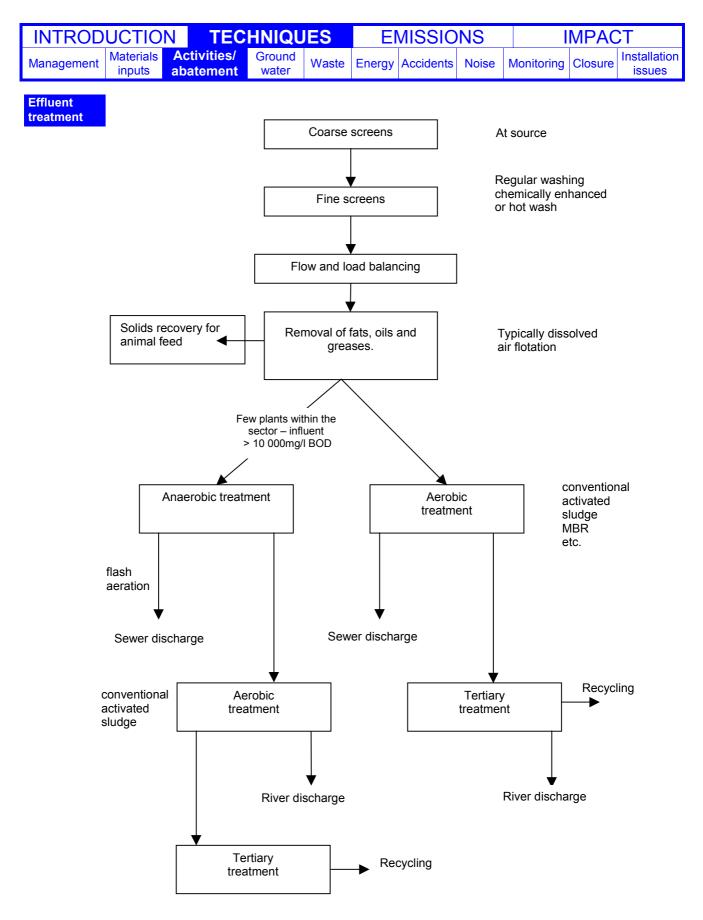
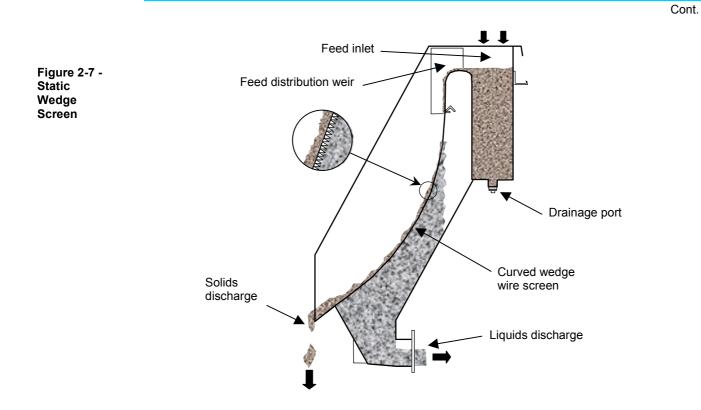
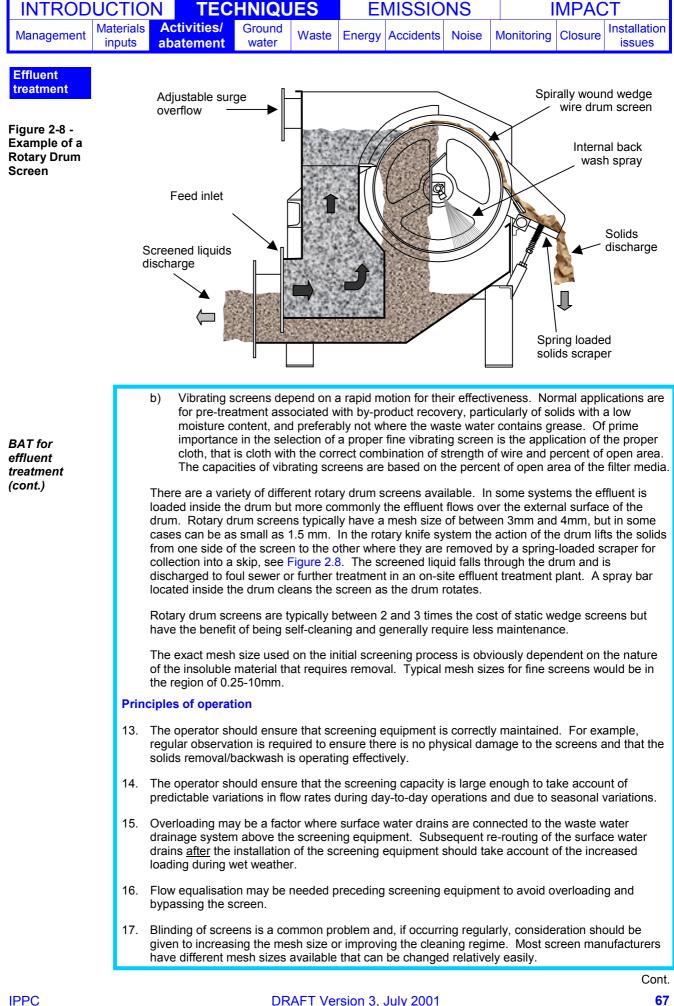





Figure 2-6 - A Typical Schematic for a Process Flow Diagram for Effluent Treatment Applicable to Food and Drink Processing Wastewaters

| INTRODUCTION          |                     | DN TEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HNIQL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | JES                                                 | E                                                   | EMISSIONS                                                 |                                                     |                                                                | IMPACT                                              |                                         |  |
|-----------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------|--|
| Management            | Materials<br>inputs | Activities/<br>abatement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ground<br>water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Waste                                               | Energy                                              | Accidents                                                 | Noise                                               | Monitoring                                                     | Closure                                             | Installation<br>issues                  |  |
| Effluent<br>treatment |                     | A diversion tank<br>The wastewater<br>order to provide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | streams s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | should be                                           | monitore                                            | d upstream                                                | n of the w                                          | astewater tr                                                   | eatment                                             | plant in                                |  |
| SAT for<br>ffluent    |                     | <ul> <li>order to provide automatic diversion to the diversion tank. The diversion tank should be linked back to the balance tank or primary treatment stage so as the out of specification liquors can be gradually introduced back into the wastewater stream. Alternatively, provision should be mad allow for the disposal off-site of the calamity tank contents.</li> <li>The objective of this stage is the removal of particulate solids or gross contaminants such as f oils and greases (FOG). The preferred solution will depend on the specific location and wastewater characteristics. Typical primary treatment techniques include screening, equalisa sedimentation, air flotation and centrifugation.</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                     |                                                           |                                                     |                                                                |                                                     |                                         |  |
| reatment<br>cont.)    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                     |                                                           |                                                     |                                                                |                                                     |                                         |  |
|                       | 2.3.                | 12.5 Primary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | / Treatme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ent                                                 |                                                     |                                                           |                                                     |                                                                |                                                     |                                         |  |
|                       | 11.                 | Reduction of ore<br>load) will reduce<br>performance an<br>provides protect<br>tend to be the h<br>hence increasin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e the organ<br>d reduce t<br>tion for all<br>eavier part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nic loading<br>he capita<br>subseque<br>ticulates f | g onto the<br>I and run<br>ent treatm<br>that can c | e secondary<br>ning costs o<br>nent stages<br>cause abras | y treatme<br>of the bio<br>i.e. solid<br>sion, bloc | ent stage her<br>logical treatr<br>s removed a<br>king and ger | nce will in<br>nent plan<br>t the prin<br>neral wea | nprove the<br>it. It also<br>nary stage |  |
|                       | Scr                 | eens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                     |                                                           |                                                     |                                                                |                                                     |                                         |  |
|                       | 12.                 | Interception of t<br>decreasing the<br>be fitted with ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | solids load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |                                                     |                                                           |                                                     |                                                                |                                                     |                                         |  |
|                       |                     | Subsequent scr<br>drains as possil<br>coarse or fine, v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ole. The m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ain types                                           | of scree                                            |                                                           |                                                     |                                                                |                                                     |                                         |  |
|                       |                     | gravity, to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | the top of top | the scree                                           | n. Liquid<br>sal. Stati                             | drains thro                                               | ough the                                            | effluent is pu<br>screen and s<br>e generally c                | solids are                                          | collected a                             |  |



and rotary drum screens, but require more maintenance.



| INTRODU                                       | ICTION                                                                                                                                      | TEC                                                                                                                                                                                                                                                                                                                       | HNIQU                                                                                                                                                                                                                                                               | JES                                                                                                                                                                                                         | El                                                                                                                                                                                                  | VISSIO                                                                                                                                                                                                                                              | NS                                                                                                                                                                                    | l                                                                                                                                                                                                                      | MPAC                                                                                                                                                                    | T                                                                                                                                                                                         |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manadement                                    |                                                                                                                                             | Activities/<br>batement                                                                                                                                                                                                                                                                                                   | Ground<br>water                                                                                                                                                                                                                                                     | Waste                                                                                                                                                                                                       | Energy                                                                                                                                                                                              | Accidents                                                                                                                                                                                                                                           | Noise                                                                                                                                                                                 | Monitoring                                                                                                                                                                                                             | Closure                                                                                                                                                                 | Installation<br>issues                                                                                                                                                                    |
| Effluent<br>treatment<br>treatment<br>(cont.) | ren<br>sec<br>var<br>sel<br>forn<br>cor<br>out<br>sta<br>Set<br>set<br>set<br>set<br>inve<br>agg<br>It s<br>of s<br>sub<br><b>Air flota</b> | ttlement invol<br>noval of partic<br>dimentation pri-<br>riation in flow,<br>f-settling, or the<br>mation of floc<br>nditioning. Set<br>tlet, settling zo<br>ge are typical<br>ttlement can be<br>ttling characte<br>ttlement area<br>olves the che<br>glomerates part<br>hould be note<br>suspended so<br>postances that | culate and<br>rocess is a<br>and gene<br>here may l<br>culating su<br>ettlement is<br>one and sli<br>ly around<br>be enhanc<br>ristics, or l<br>available v<br>mical dest<br>articles too<br>ed that son<br>lids, for ey<br>may do th<br>physical so<br>s to form a | colloidal<br>affected b<br>ral opera<br>be of a ra<br>uspensior<br>s carried<br>udge blar<br>1% dry s<br>ed throug<br>by the int<br>without in<br>abilisatio<br>o small for<br>ne waster<br>cample w<br>is. | solids, ai<br>y the was<br>tion. The<br>nge of si<br>out in cla<br>out in cla<br>nket (or s<br>olids con<br>the coagul<br>roduction<br>creasing<br>n of the p<br>gravitati<br>waters co<br>astewate | nd flocculer<br>stewater and<br>solids may<br>zes and sur<br>gulate and<br>infiers that a<br>ludge zone<br>tent.<br>lation and fl<br>of lamella<br>the physical<br>particles and<br>onal settling<br>ontain subsi-<br>process relyi<br>ture that ca | t suspen<br>ad suspen<br>y be discr<br>rface cha<br>settle the<br>are specif<br>). Sludge<br>locculatio<br>plates tha<br>al size of<br>d floccula<br>g.<br>tances tha<br>c fruit proc | sions. The<br>ided solids of<br>rete suspend<br>racteristics,<br>mass, throu-<br>fically design<br>es liberated<br>n of the solid<br>at effectively<br>the clarifier.<br>tion is the p<br>at may inter<br>cessing also | efficiency<br>characteri<br>ded partic<br>which red<br>ugh chem<br>ned with a<br>from a se<br>ds to imply<br>increase<br>Coagula<br>hysical pr<br>fere with<br>contains | of the<br>istics,<br>cles that are<br>quire the<br>ical<br>an inlet,<br>ettlement<br>rove their<br>e the<br>ation<br>rocess that<br>the settling<br>pectic<br>ning of the<br>a reactor by |
|                                               |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                             |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                     |                                                                                                                                                                                       |                                                                                                                                                                                                                        |                                                                                                                                                                         | Cont.                                                                                                                                                                                     |

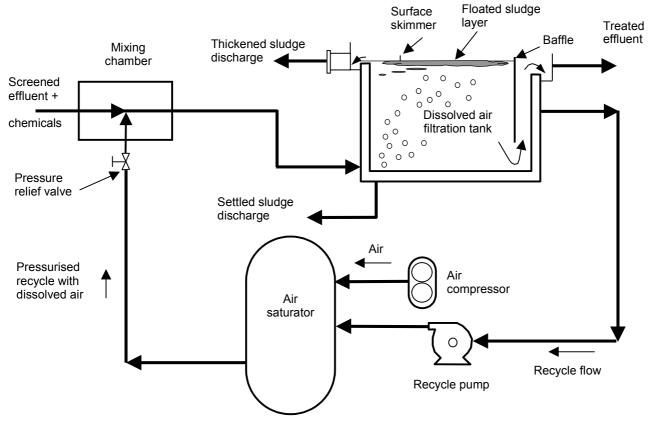



Figure 2-9 - Principle Components of Dissolved Air Flotation

| INTRODUCTION |                     |              |                    |                 |       | VISSIO |           | IMPACT |            |         |                        |
|--------------|---------------------|--------------|--------------------|-----------------|-------|--------|-----------|--------|------------|---------|------------------------|
| Management   | Materials<br>inputs | Acti<br>abat | ivities/<br>tement | Ground<br>water | Waste | Energy | Accidents | Noise  | Monitoring | Closure | Installation<br>issues |

Effluent treatment

BAT for effluent treatment (cont.) The basic mechanism of air flotation is to introduce small air bubbles into the waste water containing the suspended solids to be floated. The fine air bubbles attach themselves to the chemically conditioned particles and hence the solids float to the surface, where they are accumulated, thickened and removed by mechanical skimming or suction withdrawal. Usually chemicals such as polymers, aluminium sulphate or ferric chloride are used to enhance the adhesion of bubbles. The method of air supply is used to define the process.

Flotation is used when gravity settlement is not appropriate. For example when:

- The particulates have poor gravity settling characteristics,
- The density difference between the suspended particles and water is too low,
- There is a space constraint at the site,
- Oil and grease are to be removed,
- Recovery of material is required.

Dissolved Air Flotation (DAF) is most widely used because of its effectiveness in removing a range of solids. The DAF system generates a supersaturated solution of waste water and compressed air by raising the pressure of the waste water stream to that of the compressed air, then mixing the two in a retention tank. This supersaturated mixture of air and waste water flows to a large flotation tank where the pressure is released, thereby generating numerous small air bubbles. Through a combination of adsorption and entrapment, the flocculated particles rise to the surface of the reactor. The suspended solids float to the top of the liquid and form a foam that is then skimmed off. Some soluble colloidal substances are removed from the waste water by adding coagulation and flocculation chemicals (e.g. iron salts, aluminium salts and polyelectrolytes) to form precipitates with the solutes.

Other flotation techniques include:

- Vacuum flotation that occurs in a similar manner to DAF, except that the air is dissolved at atmospheric pressure and a sub-atmospheric vacuum is drawn to release the air.
- Induced air flotation occurs when fine air bubbles are drawn into the liquid via an induction device, such as a venturi or orifice plate.
- Electroflotation occurs when electrodes placed in the liquid create hydrogen and oxygen bubbles.

The choice of chemicals used for coagulation and flocculation will depend upon the intended disposal route for the DAF sludges. Should the sludges be recoverable as a by-product for possible animal feed, then the chemicals used must be of low toxicity. Typically, sludges recovered from a DAF cell would be in the region of 3-4% dry solids content.

#### Centrifuges

20. There are three main types of centrifuge available;

- solid bowl,
- basket,
- disk-nozzle.

The disk-nozzle configuration is primarily used for liquid/liquid separation.

The basket and solid bowl centrifuges dewater in a batch process. The solid bowl configuration relies on the supernatant liquors to either be scraped from the surface or over-top a weir arrangement at the top of the centrifuge. The basket system uses a perforated mesh hence the liquid phase passes through the filter medium during centrifugation.

### 2.3.12.6 Secondary Treatment

- 21. The objective of this stage is the removal of biodegradable materials (BOD) which can be achieved by degradation or by adsorption of pollutants to the organic sludge produced. The latter mechanism will also remove non biodegradable materials such as heavy metals. The preferred solution will depend on the specific location and wastewater characteristics.
- The basic alternatives are aerobic and anaerobic biological systems. There are many designs of each.

|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INTRODUC              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HNIQU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | JES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MISSIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MPAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                     |
|                       | erials Activities/<br>outs abatement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ground<br>water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Energy                                                                                                                                                                                                                                                                                                                                                                                                                                            | Accidents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Noise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Closure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Installation<br>issues                                                                                                                                                                                                                                                                                                                              |
| Effluent<br>treatment | The operator s the following fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | y the choi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ice and p                                                                                                                                                                                                                                                                                                                                                                                                                                         | erformance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of the se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | econdary tre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | atment pl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ant against                                                                                                                                                                                                                                                                                                                                         |
|                       | <ul> <li>the following fa</li> <li>Anaerobic tre <ol> <li>0000 mg/l BC</li> <li>An anaerobic s</li> <li>a watercourse.</li> <li>should ensure</li> <li>BOD. Whereal</li> <li>can be used fo</li> </ol> </li> <li>There should be optimum balan occurrence of of Food processin biological active Excessive level acid are used i that phosphate nitric acid in a wastewater. The operator s reducing load i  The operator s evidence of the  The operator s is signify these pa  After a biologic  After a biologic  Where space p protection agai  Post treatment  desludging sho  Techniques su  requirement. Ta  as the reaction  Common operat  Lack of ma  pH. In the r  Temperatur  Lack of mic especially f  Significant to the react  Physical ble essential.</li></ul> | atment is n<br>DD, where p<br>system alon<br>Anaerobic<br>that the fina<br>s anaerobic<br>r both "high<br>be specific p<br>ce of added<br>or bulking.<br>Ing wastewa<br>ity during tr<br>ls of phosp<br>n cleaning.<br>containing<br>process will<br>hould have<br>f necessary<br>hould confile<br>levels and<br>hould quote<br>rameters in<br>cal plant, so<br>ermits, syst<br>nst bulking<br>lagoons sh<br>buld be app<br>ch as MBR<br>chis is also<br>cro-nutrient<br>eactor, the<br>re. In the re<br>for Fe, Ca, I<br>quantities o<br>or.<br>bockage of th | ot widely<br>production<br>e would r<br>installati<br>al effluent<br>c treatment<br>al effluent<br>ter is ofte<br>eatment.<br>horus car<br>if such v<br>constitue<br>procedure<br>f such v<br>constitue<br>procedure<br>f such v<br>constitue<br>procedure<br>the resid<br>ter m wheth<br>state wh<br>e the resid<br>terms of<br>lids remo<br>is terms of<br>lids remo<br>constitue<br>f such v<br>constitue<br>procedure<br>to ont resid<br>to on tree<br>true of SI<br>pH shoul<br>eactor, th<br>s. Minimu<br>Mg and Z<br>of fats, oil<br>the reacto | used wit<br>n of bioga<br>not achiev<br>ions shout<br>is well a<br>nt is not v<br>w" streng<br>es for nut<br>s is main<br>en deficie<br>The idea<br>n also occ<br>vastewate<br>ents could<br>a similar<br>res in pla<br>er ammo<br>lether de-<br>dence tim<br>f the brea<br>problems<br>designed<br>o the pro-<br>equire cla<br>BR where<br>berienced<br>N:P ratios<br>d be main<br>e optimum<br>um quant<br>n, accorc<br>(especia<br>r inlet pip | hin the sect<br>as is econol<br>we a final ef-<br>ild be follow<br>erated to as-<br>viable for "lo<br>th effluent.<br>tient and ot<br>tained, mini-<br>nt in nitroge<br>al BOD: nitr<br>cur, particul<br>er becomes<br>d release pl<br>effect, incr<br>ce to deal w<br>nia is prese<br>nitrification<br>he, the slud-<br>kdown of th<br>d be provid<br>effit of large,<br>. This should<br>to enable e<br>cess, but sh<br>rification ar<br>e clarification<br>with anaer<br>s should no<br>ntained at 6<br>m temperat<br>ities of micr<br>ling to the s<br>ly mineral of<br>ework. Effe | tor and te<br>mically fa<br>fluent qu<br>ved by an<br>ssist in th<br>ow streng<br>her chem<br>imising b<br>en and/or<br>ogen: ph<br>larly whe<br>s anaerob<br>nosphoru<br>easing th<br>with bulkin<br>ent as a b<br>is neede<br>ge age an<br>ne more r<br>ed. This<br>post-trea<br>uld be de<br>asy desli-<br>nould be de<br>asy desli-<br>nould be de<br>asy desli-<br>nould be de<br>sasy desli-<br>nould be sasy desli-<br>nould be say desli-<br>nould be say desli-<br>nould be say desli-<br>say desli | ends to be revourable.<br>ality high end<br>aerobic sys<br>e breakdown<br>th" effluents<br>ical dosing vo<br>oth releases<br>phosphorus ra-<br>re large quan-<br>ic during tre<br>s to the final<br>e levels of a<br>mg when it ou<br>reakdown pr<br>d.<br>nd the opera-<br>esistant orga-<br>can be by s<br>atment lagoc<br>signed in wh<br>udging. The<br>carried out o<br>ore have a ma-<br>te place insid<br>ment process<br>maintained<br>esophillic ba-<br>ts should be-<br>rocess emplo-<br>reases shou- | estricted to<br>ough for of<br>tem as the<br>n of the re-<br>a aerobic<br>which ensi-<br>of nutrier<br>aneeded<br>tio is abou-<br>ntities of p<br>atment the<br>effluent.<br>mmonia i<br>ccurs inclu-<br>roduct, pr<br>ting temp<br>anic subs<br>econdary<br>ons gain e<br>ere space<br>frequence<br>n a regula<br>de the sar<br>sess are;<br>at 100:5:<br>incteria is 3<br>conteria i | b effluents ><br>discharge to<br>le latter<br>emaining<br>processes<br>sure that the<br>nts and the<br>to support<br>ut 100: 5:1.<br>ohosphoric<br>lere is a risk<br>The use of<br>n the<br>uding<br>ovide<br>tances.<br>clarifier, but<br>excellent<br>e permits.<br>ler space<br>me vessel<br>1<br>35-37 °C.<br>ed,<br>loved prior<br>reatment is |
|                       | do not exce<br>Whichever design o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ed the mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nufacture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | r's recom                                                                                                                                                                                                                                                                                                                                                                                                                                         | mendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | draulic and I<br>e able to ach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Joigin Tales                                                                                                                                                                                                                                                                                                                                        |
|                       | Benchmarks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cont.                                                                                                                                                                                                                                                                                                                                               |

|            |                     |            |                    |                 | EMISSIONS |        |           | IMPACT |            |         |                        |
|------------|---------------------|------------|--------------------|-----------------|-----------|--------|-----------|--------|------------|---------|------------------------|
| Management | Materials<br>inputs | Act<br>aba | ivities/<br>tement | Ground<br>water | Waste     | Energy | Accidents | Noise  | Monitoring | Closure | Installation<br>issues |

Effluent treatment

### Table 2-4 - Summary of Aerobic and Anaerobic Treatment Processes

| Aerobic                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conventional Activated Sludge                                                                  | This is a suspended growth process followed by secondary settlement tanks in order to separate the activated sludge from the final effluent. A portion of the settled sludge is returned to the reactor as RAS (returned activated sludge). The remainder is classed as SAS or surplus activated sludge. The rate of SAS wastage in turn dictates the second important design parameter, the sludge age. The SAS will require disposal and possibly on-site treatment (see Section 2.3.12.8).                                                                                                                                                                                                  |
| Pure Oxygen systems                                                                            | <ul> <li>Pure oxygen systems, although expensive, do have a number of operational advantages over conventional aeration systems, including:</li> <li>The ability to intensify the process by operating at higher MLSS levels and hence occupying a smaller footprint.</li> <li>Operating at extremely long sludge ages and encouraging endogenous respiration (whereby the biomass ingest each other) and hence significantly reducing sludge disposal costs.</li> <li>Reducing odour potential as the surface of the aeration tank is essentially unbroken. In conventional aeration plants, 70% of the energy is "wasted" due to the nitrogen occupying 70% of the air by volume.</li> </ul> |
| Membrane Bio-reactors<br>(MBR)                                                                 | A variation on conventional activated sludge systems whereby a number of membrane modules, or "cartridges", are placed either within the body of the reactor vessel or external to it. Clarified effluent passes through the membranes, under static head pressure, to separate the treated effluent from the MLSS. Two distinct advantages are that no secondary clarifiers are required and also very high MLSS can be achieved (typically 12-25,000 mg/l), resulting in more compact plant sizes and accelerated removal rates.                                                                                                                                                             |
| Sequencing Batch Reactor<br>(SBR)                                                              | SBR are essentially "fill and draw" processes that gave rise to conventional activated sludge. A typical SBR has five cycles, all occurring within a single reactor vessel (there is no need for a secondary clarifier); 1) Fill 2) React 3) Settle 4) Decant 5) Idle<br>The process is very flexible, but a greater degree of operator involvement in managing a number of process changes which are possible within the operating cycles (e.g. enhanced denitrification during the idle phase), can be offset by use of automated systems.                                                                                                                                                   |
| Biofilters                                                                                     | In common with the activated sludge system, it is imperative that there is a constant supply of food (BOD) and oxygen to the biomass, as well as an efficient route for transport of dead cells and other inert material away from the active site. In order that sloughing can effectively take place without blocking the media, it is important that the hydraulics and voidage within the media are correct.                                                                                                                                                                                                                                                                               |
| Biological aerated flooded<br>filters (BAFF) submerged<br>biological aerated filters<br>(SBAF) | These are a hybrid suspended/attached growth systems which are best described as an activated sludge plant which contains high voidage media to encourage bacterial growth. They also generally allow a certain amount of physical filtration within the same structure. Influent limited to <1 500 mg/l BOD. Backwashing takes place approximately every 24 hours to remove surplus biomass, and as such                                                                                                                                                                                                                                                                                      |
|                                                                                                | secondary clarification is not required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Anaerobic                                                                                      | There are three main types of basic anaerobic reactor configurations;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Anaerobic Contact<br>Processes                                                                 | The anaerobic contact process can be likened to the aerobic activated sludge process separation and recirculation of the biomass is incorporated into the design.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Anaerobic Filter                                                                               | In the anaerobic filter the growth of anaerobic bacteria is established on a packing material. The packing retains the biomass within the reactor, it also assists in the separation of the gas from the liquid phase. The system can be operated in the upflow or downflow mode.                                                                                                                                                                                                                                                                                                                                                                                                              |
| Upflow Anaerobic Sludge<br>Blanket (UASB)                                                      | The wastewater is directed to the bottom of the reactor for uniform distribution. The wastewater passes through a blanket of naturally formed bacterial granules. The bacteria carry out the reactions and natural convection lifts a mixture of gas, treated effluent and sludge granules to the top of the reactor. Patented 3-phase separator arrangements are used to separate the final effluent from the solids (biomass) and the biogas. Loadings of up to 60kg/m <sup>3</sup> /day have been reported, but more typical data would be a loading rate of 10kg/m <sup>3</sup> /day with an HRT of 4hr. UASB is not suitable for effluent containing high solids or FOG.                  |
|                                                                                                | Some recent advances in anaerobic treatment technology has seen a number of variations of the process<br>developed and successfully marketed in the UK;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| The IC Reactor (internal circulation)                                                          | One of the main advantages is that the IC reactor can undergo a certain amount of "self-regulation" irrespective of the variations in incoming flows and loads. As the load increases, the quantity of methane generated also increases, so further increasing the degree of recirculation and hence dilution of the incoming load. Typical loading rates for this process to be in the range of 15-35 kgCOD/m <sup>3</sup> .d.                                                                                                                                                                                                                                                                |
| Expanded Granular<br>Sludge Blanket (EGSB)                                                     | Similar to the aerobic filters reviewed previously, the EGSB process incorporates an amount of support media - often no more than sand or synthetic plastic materials. Light materials are often used in order to minimise the upflow velocities required to fluidise the beds, with particle sizes typically 0.3-1.0 mm. Typical loading rates for this process to be in the range of 15-35 kgCOD/m <sup>3</sup> .d.                                                                                                                                                                                                                                                                          |
| The Hybrid Process                                                                             | A further variation on the conventional UASB, incorporating a packed media zone above the main open<br>zone. This allows for the collection and retainment of non-granulated bacteria that, in conventional UASB<br>reactors, would be lost from the process.                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| INTRODU                                       | CTION TECHNIQUES EMISSIONS IMPACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N/I                                           | aterials Activities/ Ground Installation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                               | nputs abatement water Waste Energy Accidents Noise Monitoring Closure issues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Effluent.                                     | 22427 Tertiens treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Effluent<br>treatment                         | <ul> <li>2.3.12.7 Tertiary treatment</li> <li>23. Tertiary treatment refers to any process that is considered a "polishing" phase after the secondar</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                               | treatment techniques up to and including disinfection and sterilisation systems. The need for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| BAT for<br>effluent                           | tertiary treatment is dictated by two potential factors:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| treatment                                     | <ul> <li>the requirement to meet discharge conditions based on Environmental Quality Standards<br/>(EQS) which may be stricter than the requirements of BAT, relevant substances include</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (cont.)                                       | ammonia, List I and List II substances and suspended solids:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                               | <ul> <li>recycling of water back into the factory either as process water or wash water.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                               | There are two categories of Tertiary Treatment Processes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                               | Macrofitration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                               | <ol> <li>Macro filtration describes the tertiary removal of suspended solids, usually through the use of<br/>sand filtration or mixed media (e.g. sand/anthracite blends). Filters may be either gravity filters o<br/>pressure filters.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                               | More specialised types of filtration media, such as Granular Activated Carbon (GAC), are used to remove certain chemicals, tastes and odours. GAC works by adsorbance of the contaminants onto and within the carbon granules. In time the carbon will need regeneration, which is usually carried out by incineration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                               | There are now a number of constantly "self cleaning" sand filters available which have proven to be extremely effective at polishing suspended solids from the final effluent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                               | Membrane techniques<br>25. Membrane techniques is a term applied to a group of processes that can be used to separate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                               | suspended, colloidal and dissolved solutes from a process waste water. The technology is applie<br>for example in the dairy industry to recover milk as a useable by-product from wastewaters<br>Membrane filtration processes use a pressure driven, semi-permeable membrane to achieve<br>selective separations. Much of the selectivity is established by designations relative to pore size.<br>The pore size of the membrane will be relatively large if precipitates or suspended materials are<br>to be removed (crossflow microfiltration), or very small for the removal of inorganic salts or<br>organic molecules (ultrafiltration or reverse osmosis). During operation, the feed solution flows<br>across the surface of the membrane, clean water permeates through the membrane, and the<br>contaminants and a portion of the feed remain. The clean or treated water is referred to as the<br>permeate or product water stream, while the stream containing the contaminants is called the<br>concentrate, brine, reject, or sludge returns. The operator should have a strategy for dealing with<br>the concentrate. |
|                                               | The technologies employed depend on the level of "filtration" that is actually required, and generally consist of:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                               | Micro filtration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                               | <ul> <li>Ultra filtration</li> <li>Nano filtration</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                               | Reverse Osmosis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                               | C Expansion Expansion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                               | o Inlet DioReactor Ultrafiltration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Figure 2-10 -<br>Example of                   | Sludge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Membrane<br>Bioreactor<br>(MBR) at a<br>Dairy | Air Clean Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Food and Drink

|            |                  | N TEC                    | <b>CHNIQUES</b> |       | EMISSIONS |           |       | IMPACT     |         |                        |
|------------|------------------|--------------------------|-----------------|-------|-----------|-----------|-------|------------|---------|------------------------|
| Management | Materials inputs | Activities/<br>abatement | Ground<br>water | Waste | Energy    | Accidents | Noise | Monitoring | Closure | Installation<br>issues |

# Effluent treatment

Table 2-5 -Comparison of Performance Data for MBR Plant and Conventional Activated Sludge Plant

|                                                                     | MBR                  | AS                            |
|---------------------------------------------------------------------|----------------------|-------------------------------|
| Tank volume required for the<br>process biology                     | 2,000 m <sup>3</sup> | 10,300 m <sup>3</sup>         |
| Land surface area occupied by the biology tank volume,              | 254 m <sup>2</sup>   | 1, 800 - 2,600 m <sup>2</sup> |
| Land surface area required for the final effluent/sludge separation | Membrane area        | 2 x settlement tanks          |
|                                                                     | 24 m <sup>2</sup>    | 474 m <sup>2</sup>            |
| BOD in the effluent discharged to river                             | <10 mg/l             | < 20 mg/l can be achieved     |
| Suspend solids discharge                                            | < 1 mg/l             | < 30 mg/l can be achieved     |

### 2.3.12.8 Sludge Treatment and Disposal

BAT for effluent treatment (cont.)

26. Sludge treatment and disposal is quite often left until last when companies consider on-site effluent treatment, however, in terms of capital expenditure and operating costs, sludge treatment and disposal can prove as expensive (if not more so) than the rest of the effluent treatment plant. Whilst environmental legislation continues to limit the disposal options available, or significantly increase the associated cost, the management and disposal of solid waste will remain as one of the most fundamental issues facing the effluent plant operator. The disposal of sludge by means of landspreading (see section 2.6) may also be disrupted by weather conditions i.e. a period of heavy rain, which means that suitable storage capacity may be a factor.

Before considering on-site sludge treatment and potential disposal routes, the plant operator should be more concerned with how to reduce the cost of disposal and this is generally associated with a reduction in sludge volume rather than the optimisation of an on-site treatment process.

It has already been seen in Section 2.3.12.5 how a large amount of solids can be removed from the influent by the efficient use of primary treatment processes (screenings, DAF, settlement etc.) It is assumed that any product recovery that can take place has already been achieved, and as such, any solid material that cannot be recovered must be disposed of in an environmentally acceptable way and the costs absorbed into the overall running cost.

In addition, any aerobic biological treatment process employed will, by its very nature, convert a high proportion of the organic load to new bacteria cells, the wasting of which (as Surplus Activated Sludge) will further contribute to the solid material that requires disposal. The quantity of sludges produced for disposal from an anaerobic system would be significantly less.

### Sludge treatment techniques

27. Sludge treatment techniques are generally employed to either reduce the volume of sludges produced for disposal, or to change the nature of the sludge to a form suitable for re-use (e.g. land application) or for landfill. It should be noted that the final disposal route for sludges liberated from an effluent treatment plant will dictate the level of treatment required, hence the disposal options for sludges should be investigated during the early stages of design.

#### Sludge thickening

28. Sludge Thickening can be applicable to both secondary biological waste sludge and primary solids. Before assessing effective processes for sludge thickening, it must be appreciated that there is a fundamental difference between primary and secondary solids. Primary solids consist mainly of inorganic material and/or primary organic solids. They are able to settle and compact generally without chemical supplementation and as such associated water is not excessively 'entrained' within the sludge. The opposite is the case for secondary biological sludges, whereby the water is bound within the flocs and hence is generally more difficult to dewater. Some form of chemical addition will always be required to optimise the dewatering of biological sludges.

In order to optimise any dewatering process, where possible ensure that any primary sludges are mixed with biological sludges to help minimise the proportion of entrained water. The exact ratio will depend on the individual site-specific processes and the relative volumes of sludges for disposal.

| INTRODUC      | CTION TEC                                                                                                                                                 | CHNIQUES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EMISSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ONS                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                  | MPAC                                                                                                                                                                                                                                                                                     | Т                                                                                                   |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|               | terials Activities/                                                                                                                                       | Ground<br>water Waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Energy Accident                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s Noise                                                                                                                                                                                                                                                                                                                | Monitoring                                                                                                                                                                                                                                                                                                                                       | Closure                                                                                                                                                                                                                                                                                  | Installation<br>issues                                                                              |
|               |                                                                                                                                                           | Wator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                          | 100000                                                                                              |
| Management Ma | Activities/<br>abatementSludges that a<br>be around 0.5-<br>Dissolved Air I<br>consolidate fun<br>consolidate fun<br>considered whThe efficiend<br>       | Ground<br>water Waster<br>re taken from the bo-<br>1.0% dry solids com-<br>Flotation. The most<br>ther in sludge settle<br>en opting for this te-<br>incy of the dewaterin<br>me of supernatant a<br>tall and narrow rath<br>upon the details of<br>two tanks to allow f<br>is is not possible, ar<br>le plate, to minimise<br>entle agitation withir<br>used) to help reduc<br>gasses and water.<br>time within the tank<br>retention must be av-<br>vith consequent odo<br>tes to the thickener<br>I gravity/picket fence<br>again dependent or<br>nary sludge.<br>s, sludge thickening<br>e disposal to be und<br>process is a first sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Energy Accident<br>ottom of primary and<br>tent, with slightly his<br>straightforward dew<br>ment tanks. A num<br>chnique:<br>g process is affecte<br>above it. Therefore<br>her than a low tank w<br>the primary solids/S<br>for quiescent settling<br>range the sludge in<br>hydraulic disturban<br>the tank (a picket f<br>e stratification of the<br>will be entirely dep<br>voided to minimise t<br>ur and corrosion pro-<br>should be in the ran<br>e thickener should b<br>in the nature of the ra-<br>is sufficient alone to<br>ertaken in a sufficient<br>age prior to further d | I secondary<br>gher values<br>vatering tec<br>ber of key<br>d by the he<br>the tank sh<br>with a large<br>AS remova<br>g of one tar<br>et to be ne<br>ce.<br>ence thicke<br>sludge an<br>endent upc<br>ne possibili<br>oblems.<br>ge of 20-30<br>e capable a<br>reduce the<br>ntly cost ef<br>ewatering.<br>a sludge p | Monitoring<br>y settlement<br>s (up to 4%<br>chnique is to<br>design poin<br>eight of the s<br>ould have a<br>e surface are<br>al pattern, c<br>nk whilst the<br>ear the top o<br>ener within t<br>d to assist in<br>on the nature<br>ity of anaero<br>0 m <sup>3</sup> of feed<br>of thickening<br>and in partic<br>e volume of<br>ffective man | Closure<br>t tanks wil<br>dry solids<br>allow the<br>ts should<br>sludge lay<br>a specific a<br>ea.<br>onsiderati<br>e second i<br>f the tank<br>he tank is<br>n the relea<br>obic condi<br>l/m <sup>2</sup> of sur<br>g the slud<br>cular the re<br>sludge to<br>ner. For<br>"solid" wa | Installation<br>issues                                                                              |
|               | solids become<br>may be betwee<br>In most cases,<br>the separation<br>high molecular<br>such chemical<br>process. The<br>the WRc Capil<br>the plant opera | o where a liquid sluc<br>s difficult and exper<br>en 20-50% dry solid<br>further dewatering<br>of the bound and e<br>r weight polymeric fl<br>s should be more th<br>chemical suppliers s<br>lary Suction Timer a<br>ators should also be<br>igainst chemical usa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sive to pump. Dew<br>s which will in turn s<br>will first require som<br>ntrained water from<br>occulants that are p<br>an offset by the imp<br>should also carry ou<br>upparatus) to optimis<br>come familiar with t                                                                                                                                                                                                                                                                                                                                                                     | atering pro<br>ignificantly<br>e form of c<br>within the<br>articularly e<br>rovement i<br>t a regular<br>se dosage.                                                                                                                                                                                                   | duces a slu<br>reduce disp<br>chemical cor<br>sludge. The<br>effective and<br>in performar<br>testing regin<br>It is strong                                                                                                                                                                                                                      | dge "cake<br>cosal cost<br>nditioning<br>ere is a wi<br>d the high<br>nce of the<br>me (often<br>ly recomn                                                                                                                                                                               | ", which<br>ts.<br>to assist in<br>de range of<br>price of<br>dewatering<br>based on<br>nended that |
|               | frequency of s <ul> <li><i>Filter (or pl</i><br/>covered wi</li> </ul>                                                                                    | ludge dewatering pr<br>olids produced, and<br><i>late) presses</i> are ba<br>th a suitable filter clu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the sludge cake red<br>tch processes, and<br>oth (dependent upon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | luired:<br>can be mai<br>n the applic                                                                                                                                                                                                                                                                                  | nually intens<br>cation) and t                                                                                                                                                                                                                                                                                                                   | sive. The<br>he sludge                                                                                                                                                                                                                                                                   | "plates" are<br>e is fed into                                                                       |
|               | filter cloth.<br>manually s<br>press can                                                                                                                  | avity. The sludge is<br>Once the pressure<br>craped off or vibration<br>produce up to 40% of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | is released and the<br>on mechanisms em<br>dry solids cake.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | plates sep<br>ployed to a                                                                                                                                                                                                                                                                                              | arated, the utomate the                                                                                                                                                                                                                                                                                                                          | cake is ei<br>process.                                                                                                                                                                                                                                                                   | ther<br>A filter                                                                                    |
|               | that forcefu<br>specialised<br>costs gene                                                                                                                 | ress is a continuous<br>ally dewater the slud<br>d maintenance. A be<br>rally quite high.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ge. Performance o<br>elt press can produc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | otimisation<br>e up to 35º                                                                                                                                                                                                                                                                                             | does requir<br>% dry solids                                                                                                                                                                                                                                                                                                                      | e regular<br>cake. Cl                                                                                                                                                                                                                                                                    | and<br>nemical                                                                                      |
|               | for certain<br>problems a                                                                                                                                 | s are also continuou<br>sludges. Because c<br>are minimal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of the "closed" natur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e of the cer                                                                                                                                                                                                                                                                                                           | ntrifuge, ass                                                                                                                                                                                                                                                                                                                                    | ociated o                                                                                                                                                                                                                                                                                | dour                                                                                                |
|               | <ul> <li>The screw screenings</li> <li>For existing activitie</li> </ul>                                                                                  | press is particularly<br>the screw press shares the operator should be appreciated by the operator should be ap | ould produce cake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | of 25-30%                                                                                                                                                                                                                                                                                                              | dry solids.                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                        | -                                                                                                   |
|               | the Regulator.                                                                                                                                            | ., ווב טף <del>כ</del> ומנטו אוטנ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ad implement any a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | greeu lech                                                                                                                                                                                                                                                                                                             | าาเๆนธร เบ ส                                                                                                                                                                                                                                                                                                                                     | unescale                                                                                                                                                                                                                                                                                 | agreeu with                                                                                         |
| 74            |                                                                                                                                                           | Draft Vers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ion 3, July 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                  | Foo                                                                                                                                                                                                                                                                                      | d and Drink                                                                                         |

| INTRODU                                    | СТІС                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ON TEC                                                                                                                                 | HNIQU                                              | JES                                                | E                                               | MISSIO                                                    | NS                                                 |                                                           | MPAC                                                                                                             | СТ                     |  |  |  |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------|--|--|--|
|                                            | aterials<br>nputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                        | Ground<br>water                                    | Waste                                              | Energy                                          | Accidents                                                 | Noise                                              | Monitoring                                                | Closure                                                                                                          | Installation<br>issues |  |  |  |
| Fugitives                                  | <ul> <li>2.3.13 Control of <u>fugitive</u> emissions to air</li> <li>On many installations, fugitive, or diffuse, emissions may be more significant than point source emissions, particularly where sources are unenclosed (see Section 2.3.11). In addition to the sources referred to in section 2.3.11, other examples of the sources of fugitive emissions include: <ul> <li>open vessels (e.g. the effluent treatment plant);</li> <li>the loading and unloading of transport containers;</li> <li>transferring material from one vessel to another (e.g. furnace, ladle, reactors, silos);</li> <li>conveyor systems;</li> <li>pipework and ductwork systems (e.g. pumps, valves, flanges, catchpots, drains, inspection hatches etc);</li> <li>poor building containment and extraction;</li> <li>potential for bypass of abatement equipment (to air or water);</li> <li>accidental loss of containment from failed plant and equipment.</li> </ul> </li> </ul> |                                                                                                                                        |                                                    |                                                    |                                                 |                                                           |                                                    |                                                           |                                                                                                                  |                        |  |  |  |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                        |                                                    |                                                    |                                                 |                                                           |                                                    |                                                           |                                                                                                                  |                        |  |  |  |
|                                            | <ul> <li>With the Application the operator should:</li> <li>30. supply the general Application requirements for Section 2.3 on page 25 for control of fugitive</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                        |                                                    |                                                    |                                                 |                                                           |                                                    |                                                           |                                                                                                                  |                        |  |  |  |
|                                            | <ul> <li>30. supply the general Application requirements for Section 2.5 on page 25 for control of highlive emissions to air; and in addition,</li> <li>31. identify, and where possible quantify, significant fugitive emissions to air from all relevant sour including those below, estimating the proportion of total emissions which are attributable to fugitive releases for each substance; these steps will be carried out as in response to Section but need to be understood here in order to demonstrate that the controls are adequate.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                        |                                                    |                                                    |                                                 |                                                           |                                                    |                                                           |                                                                                                                  |                        |  |  |  |
|                                            | Ind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | icative BAT F                                                                                                                          | Requirer                                           | nents                                              |                                                 |                                                           |                                                    |                                                           |                                                                                                                  |                        |  |  |  |
| BAT for<br>fugitive<br>emissions<br>to air | 1.<br>2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (see item 3 in S<br>Regulator but in<br>The operator sh<br>reduce fugitive e                                                           | ection 2.3)<br>any case<br>ould desci<br>emissions | as an in<br>within the<br>ribe the n<br>to air. Th | nproveme<br>e timesca<br>neasures<br>nis descri | nt condition<br>le given in<br>and procec<br>ption should | n to a tim<br>Section 1<br>lures in p<br>d include | escale to be<br>I.1.<br>place and pro<br>, but is not lin | ent or control options<br>be agreed with the<br>proposed to prevent or<br>ot limited to, the<br>measures are not |                        |  |  |  |
|                                            | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The operator sh<br>Section 3.1), qu                                                                                                    | ould main<br>antified wh                           | tain an in<br>tere poss                            | ventory (<br>sible, of s                        | which may<br>ignificant fu                                | be submi<br>gitive em                              | itted as part<br>issions to ai                            | of the res<br>r.                                                                                                 | sponse to              |  |  |  |
|                                            | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                        | h substan                                          | ce. Whe                                            | re there a                                      | are opportui                                              | nities for                                         | reductions, t                                             |                                                                                                                  |                        |  |  |  |
|                                            | <ul> <li>releases for each substance. Where there are opportunities for reductions, the Permit may require the updated inventory to be submitted on a regular basis.</li> <li>5. The following general techniques should be employed where appropriate: <ul> <li>transferring materials on demand rather than in individual batch containers;</li> <li>minimising potential for spillage through the use of well maintained and well designed pipe couplings;</li> <li>minimising exposed surface areas of stored materials;</li> <li>maintaining pumps, seals, glands and flanges;</li> <li>improved scheduling of material deliver, collection and processing;</li> <li>covering of skips and vessels;</li> </ul> </li> </ul>                                                                                                                                                                                                                                         |                                                                                                                                        |                                                    |                                                    |                                                 |                                                           |                                                    |                                                           |                                                                                                                  |                        |  |  |  |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>avoidance o</li> <li>where unavoidence o</li> <li>wheel and ro</li> <li>closed convoidrops;</li> <li>regular house</li> </ul> | oidable, us<br>bad cleanir<br>eyors, pne           | e of spra<br>ng (avoid                             | ys, binde<br>ing transt                         | rs, stockpile<br>er of polluti                            | e manage<br>on to wat                              | ement techni<br>ter and wind                              | blow);                                                                                                           |                        |  |  |  |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                        |                                                    |                                                    |                                                 |                                                           |                                                    |                                                           |                                                                                                                  | Cont.                  |  |  |  |

| INTROD     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HNIQL                                                                                           | IES                                                                                              | F                                                                                   | VISSIO                                                                                                     | NS                                                                         | 11                                               | MPAC                            | T                               |  |  |  |
|------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------|---------------------------------|---------------------------------|--|--|--|
|            | Materials                             | Activities/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ground                                                                                          |                                                                                                  |                                                                                     |                                                                                                            | Noise                                                                      |                                                  | Closure                         | Installation                    |  |  |  |
| Management | inputs                                | abatement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | water                                                                                           | Waste                                                                                            | Energy                                                                              | Accidents                                                                                                  | NUISE                                                                      | Monitoring                                       | Closule                         | issues                          |  |  |  |
| Fugitives  | 7. (<br>For ex<br><b>Chill</b>        | <ul> <li>When transferring volatile liquids, the following techniques should be employed - subsurface filling via filling pipes extended to the bottom of the container, the use of vapour balance lines that transfer the vapour from the container being filled to the one being emptied, or an enclosed system with extraction to suitable abatement plant.</li> <li>Vent systems should be chosen to minimise breathing emissions, e.g. pressure/vacuum valves, and, where relevant, should be fitted with knock-out pots and appropriate abatement equipment.</li> </ul>           |                                                                                                 |                                                                                                  |                                                                                     |                                                                                                            |                                                                            |                                                  |                                 |                                 |  |  |  |
| BAT        | Ques<br>With<br>1. s<br>Indic<br>1. T |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | aral Applica<br>in relation<br>Requirer<br>ould descr<br>emissions<br>w. The ope<br>pection sho | and Fro<br>e operation required to chilling<br>ments<br>to air. The<br>erator sho<br>bould be ca | eezing E<br>for sho<br>irements<br>g and free<br>easures<br>is should<br>uld justif | quipment<br>uld:<br>for Section<br>ezing equip<br>and proced<br>i include, bu<br>y where any<br>using prop | 2.3 on p<br>ment.<br>lures in p<br>ut is not l<br>y of the n<br>rietary le | place and prop<br>imited to, the<br>neasures are | posed to<br>general<br>not empl | prevent or<br>measures<br>loyed |  |  |  |
|            |                                       | <ul> <li>Regular inspection should be carried out using proprietary leak detection equipment;</li> <li>Ensure that a system log book is kept which records: <ul> <li>Quantity of refrigerant and oil added to or removed from the system(s);</li> <li>Leakage testing results;</li> <li>Location and details of specific leakage incidents.</li> </ul> </li> <li>Monitor plant performance.</li> </ul> 2. Under no circumstances should refrigerants be vented to the atmosphere. For existing activities, the above standards should be met within the timescale given in Section 1.1. |                                                                                                 |                                                                                                  |                                                                                     |                                                                                                            |                                                                            |                                                  |                                 |                                 |  |  |  |

| INTROD                          |                                  |                                                                                                                                                                                                                   | HNIQL                                       | JES                                 | E                                    | MISSIC                                          | NS                               |                                                    | MPAC                               |                                        |  |  |
|---------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------------------|----------------------------------|----------------------------------------------------|------------------------------------|----------------------------------------|--|--|
| Management                      |                                  | Activities/<br>abatement                                                                                                                                                                                          | Ground<br>water                             | Waste                               | Energy                               | Accidents                                       | Noise                            | Monitoring                                         | Closure                            | Installation<br>issues                 |  |  |
| Fugitives                       | The env<br>objective<br>the land | Control<br>ground<br>vironment also<br>e of preventin<br>I. It is a required to a satisfa                                                                                                                         | water<br>includes<br>g and con<br>rement of | the land<br>trolling po<br>IPPC tha | and while<br>ollution o<br>t upon de | e many of th<br>f the water of<br>efinitive ces | e measu<br>environm<br>sation of | ires describe<br>ient, they will<br>activities tha | d below h<br>also servite the site | nave the<br>ve to prote<br>of operatio |  |  |
|                                 |                                  | ation Form<br>on 2.3 (cont.)                                                                                                                                                                                      | $\mathbf{X}$                                | Fugitive                            | e Emissio                            | ns to Water                                     |                                  |                                                    |                                    |                                        |  |  |
|                                 | 1. su                            | <ul> <li>With the Application the operator should:</li> <li>1. supply the general Application requirements for Section 2.3 on page 25 for control of fugitive emissions to air; and in addition,</li> </ul>       |                                             |                                     |                                      |                                                 |                                  |                                                    |                                    |                                        |  |  |
|                                 | rel<br>rel                       |                                                                                                                                                                                                                   |                                             |                                     |                                      |                                                 |                                  |                                                    |                                    |                                        |  |  |
|                                 | Indica                           | tive BAT F                                                                                                                                                                                                        | Requirer                                    | nents                               |                                      |                                                 |                                  |                                                    |                                    |                                        |  |  |
| BAT for fugitive<br>missions to | 1. WI                            | here there are<br>gitive emissior                                                                                                                                                                                 | e opportun                                  | ities for r                         |                                      |                                                 | t may ree                        | quire the upd                                      | lated inve                         | entory of                              |  |  |
| water                           | rec<br>me                        | reduce fugitive emissions to water and land. This should include, but is not limited to, the measures described below. The operator should justify where any of the measures are not employed.                    |                                             |                                     |                                      |                                                 |                                  |                                                    |                                    |                                        |  |  |
|                                 | Gener                            | al techniq                                                                                                                                                                                                        | ues                                         |                                     |                                      |                                                 |                                  |                                                    |                                    |                                        |  |  |
|                                 | 3. <b>De</b>                     | esignated cle                                                                                                                                                                                                     | -                                           |                                     |                                      |                                                 |                                  |                                                    |                                    |                                        |  |  |
|                                 | •                                | designated a example trol                                                                                                                                                                                         | leys and t                                  | hese area                           | as must r                            | ot discharg                                     | e into su                        | rface water of                                     | drains;                            |                                        |  |  |
|                                 | •                                | • the cleaning of yard and parking areas using steam or pressure cleaners, should not be carried out unless the effluent generated can be contained by isolating the area from the surface water drainage system. |                                             |                                     |                                      |                                                 |                                  |                                                    |                                    |                                        |  |  |
|                                 | 4. <b>Su</b>                     | ıbsurface str                                                                                                                                                                                                     | uctures                                     |                                     |                                      |                                                 |                                  |                                                    |                                    |                                        |  |  |
|                                 | •                                | the sources, direction and destination of all installation drains should be establis recorded and up to date plans kept on site;                                                                                  |                                             |                                     |                                      |                                                 |                                  |                                                    |                                    | ed and                                 |  |  |
|                                 | · ·                              | all gullies, gr<br>for foul drain<br>plans kept of                                                                                                                                                                | s. Notices                                  |                                     |                                      |                                                 |                                  |                                                    |                                    |                                        |  |  |
|                                 | •                                | drains shoul<br>within the ins                                                                                                                                                                                    |                                             | constructi                          | on to with                           | nstand the o                                    | cleaning                         | materials wh                                       | ich may b                          | be utilised                            |  |  |
|                                 | •                                | the sources, recorded and                                                                                                                                                                                         |                                             |                                     |                                      |                                                 | ace pipev                        | work should b                                      | oe establi                         | shed and                               |  |  |
|                                 | •                                | all subsurfact<br>systems sho<br>these occur,<br>involved;                                                                                                                                                        | uld be eng                                  | gineered                            | to ensure                            | e leakages f                                    | rom pipe                         | es etc are mir                                     |                                    |                                        |  |  |
|                                 | ·                                | in particular,<br>subsurface p                                                                                                                                                                                    | oipework, s                                 | sumps ar                            | nd storag                            | e vessels;                                      |                                  |                                                    | -                                  |                                        |  |  |
|                                 | •                                | an inspection<br>structures, e                                                                                                                                                                                    |                                             |                                     |                                      | me should                                       | De estad                         | INSTIEU TOF All                                    | SUDSUNA                            | 6 <b>6</b>                             |  |  |
|                                 | 5. <mark>Su</mark><br>•          | <b>irfacing</b><br>a descriptior                                                                                                                                                                                  | n of the de                                 | sign (#), d                         | construct                            | on and con                                      | dition of                        | the surfacing                                      | ) of all op                        | erational                              |  |  |
|                                 | •                                | areas should<br>there should<br>spill contain                                                                                                                                                                     | be provic<br>be an ins                      | led;<br>pection a                   |                                      |                                                 |                                  | -                                                  |                                    |                                        |  |  |
| PPC                             |                                  |                                                                                                                                                                                                                   |                                             |                                     |                                      | July 2001                                       |                                  |                                                    |                                    |                                        |  |  |

| INTROD     |                     |            |                    | HNIQU           |       |        | MISSIO    |       |            | MPAC    |                        |
|------------|---------------------|------------|--------------------|-----------------|-------|--------|-----------|-------|------------|---------|------------------------|
| Management | Materials<br>inputs | Act<br>aba | ivities/<br>tement | Ground<br>water | Waste | Energy | Accidents | Noise | Monitoring | Closure | Installation<br>issues |

| TRODUCTIO        | JN IEC                                                                            | HNIQU                                                                                                                                                                                                                                                                                                                                       | JES                                                                                                                                                                                                                                                          | E                                                                                                                                                                                                                                           | <b>MISSIO</b>                                                                                                                                                                                                                               | NS                                                                                                                                                                    |                                                                                                                                                                                        | MPAC                                                                                                                                                 |                                                                                                                                 |
|------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| agement Material | s Activities/<br>abatement                                                        | Ground<br>water                                                                                                                                                                                                                                                                                                                             | Waste                                                                                                                                                                                                                                                        | Energy                                                                                                                                                                                                                                      | Accidents                                                                                                                                                                                                                                   | Noise                                                                                                                                                                 | Monitoring                                                                                                                                                                             | Closure                                                                                                                                              | Installation<br>issues                                                                                                          |
| tives 6.         | <ul> <li>spill contained</li> <li>sealed contained</li> <li>connection</li> </ul> | vious surfa<br>ainment ke<br>onstruction<br>on to a sea<br>(roofed) ar<br>rmation ma<br>ength/reini<br>quality as<br>e provided<br>unds shou<br>able and re<br>et (i.e. no of<br>rk routed vi<br>to catch le<br>city of 110<br>regular vi<br>al control a<br>equently in<br>ts within th<br>ne program<br>doubt.<br>mation on<br>ner issues | ace;<br>ace;<br>ace;<br>aled sints;<br>aled drain<br>reas to m<br>ay include<br>for cemen<br>ssurance<br>for all tal<br>drains or<br>within buil<br>eaks from<br>% of the<br>sual insp<br>after check<br>spected,<br>ne bund visit<br>bund siz<br>for this s | age syste<br>inimise su<br>e as appr<br>it; resista<br>procedur<br>nks conta<br>o the stor<br>taps) and<br>nded area<br>i tanks, o<br>largest ta<br>ection an<br>king for c<br>be fitted<br>where pos<br>ual inspec-<br>ing and d<br>ector. | em;<br>urface run c<br>opriate: cap<br>nce to chen<br>es.)<br>ining liquid:<br>ed material:<br>d drain to a<br>as with no p<br>r fittings;<br>nk or 25% of<br>contamination<br>with a high-<br>ssible or oth<br>ction of bun<br>esign can b | off.<br>bacities; f<br>nical atta<br>s whose<br>s;<br>blind coll<br>benetration<br>of the tot<br>ents pum<br>on;<br>-level pro-<br>nerwise p<br>ds includ<br>be found | thicknesses;<br>ck; inspection<br>spillage coul<br>lection point;<br>on of contain<br>al tankage, w<br>ped out or o<br>obe and an a<br>provide adeq<br>ling water te<br>in (Ref. 12) a | falls; main and main and main<br>and be harr<br>d be harr<br>ed surfact<br>whichever<br>therwise<br>larm as a<br>uate cont<br>sting whe<br>and (Ref. | terial;<br>aintenance<br>mful to the<br>es by pipes<br>r is the<br>removed<br>appropriate;<br>ainment;<br>ere structura<br>13). |

| INTRODU                 | JCTIC               | )N            | TEC                                              | HNIQU                                                    | JES                                                                | E                                                           | VISSIO                                                          | NS                                              |                                                                                                    | MPAC                                                | Т                                      |
|-------------------------|---------------------|---------------|--------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------|
| Management <sup>N</sup> | Materials<br>inputs |               | ctivities/<br>batement                           | Ground<br>water                                          | Waste                                                              | Energy                                                      | Accidents                                                       | Noise                                           | Monitoring                                                                                         | Closure                                             | Installation<br>issues                 |
| Odour                   | 2.3                 | .15           | Odour                                            |                                                          |                                                                    |                                                             |                                                                 |                                                 |                                                                                                    |                                                     |                                        |
|                         | In th<br>The        | e foo<br>prod | d and drink                                      | eryday sta                                               | ples such                                                          | as bread                                                    | d, beer and                                                     | chocolate                                       | receives par<br>e to name bu<br>roblems.                                                           |                                                     |                                        |
|                         |                     |               | tion Form<br>n 2.3 (cont.                        |                                                          | Odour                                                              | Control                                                     |                                                                 |                                                 |                                                                                                    |                                                     |                                        |
|                         |                     |               | e Applica                                        |                                                          |                                                                    |                                                             |                                                                 |                                                 | 07 f                                                                                               |                                                     |                                        |
|                         | 1.                  | add           | ition, where                                     | odour cou                                                | Ild potent                                                         | ally be a                                                   | problem, th                                                     |                                                 | age 25 for o<br>or should:                                                                         | dour cont                                           | rol; and in                            |
| BAT for odour           | 2.                  |               | ntain an Od                                      | -                                                        | -                                                                  |                                                             | should:                                                         |                                                 |                                                                                                    |                                                     |                                        |
| control                 |                     | (a)           | 1. Rele<br>perm<br>such<br>dispe<br>perm<br>prob | nitted relea<br>cookers, d<br>ersion betw<br>nitted and, | se from the<br>dryers and<br>veen sour<br>under cen<br>aditions in | be ackn<br>ne proces<br>d combus<br>rce and re<br>tain cond | ss (e.g. rele<br>stion plant)<br>eceptor to p<br>litions, the p | ases forn<br>and an el<br>revent oc<br>olume ma | ermit – i.e. th<br>n contained o<br>lement of BA<br>dour nuisanc<br>ay ground ca<br>d on the actio | or defined<br>AT is adec<br>e. The re<br>lusing odd | d sources<br>quate<br>elease is<br>our |
|                         |                     |               |                                                  |                                                          |                                                                    |                                                             |                                                                 |                                                 | normally be<br>od practice o                                                                       |                                                     |                                        |
|                         |                     | (b)           | For each                                         | relevant c                                               | ategory,                                                           | demons                                                      |                                                                 | here will                                       | not be an c                                                                                        |                                                     |                                        |
|                         |                     | (c)           | For each                                         | <i>relevant c</i><br>conditions                          | ategory,                                                           | identify                                                    | the action:                                                     | <b>s</b> to be ta                               | ken in the ev<br>dour probler                                                                      |                                                     |                                        |
|                         | 3.                  |               | each releva<br>ssions unde                       |                                                          |                                                                    |                                                             |                                                                 |                                                 | odour proble                                                                                       | em from t                                           | he                                     |
|                         | 4.                  |               |                                                  |                                                          |                                                                    |                                                             |                                                                 |                                                 | event of abr<br>s (see odour                                                                       |                                                     |                                        |
|                         | 5.                  |               | cribe the cu<br>dance or in                      |                                                          | oposed po                                                          | osition wi                                                  | th regard to                                                    | any tech                                        | iniques in the                                                                                     | e existing                                          | Sector                                 |
|                         | Ind                 | icat          | ive BAT I                                        | Require                                                  | ments                                                              |                                                             |                                                                 |                                                 |                                                                                                    |                                                     |                                        |
|                         | 1.                  | Ass           |                                                  | d Control -                                              | – Guidano                                                          | e for Re                                                    | gulators and                                                    | d Industry                                      | arate guidar<br>∕ <mark>(see Ref</mark> . 2<br>) criteria.                                         |                                                     |                                        |
|                         | Poir                | nt so         | urce emiss                                       | ions                                                     |                                                                    |                                                             |                                                                 |                                                 |                                                                                                    |                                                     |                                        |
|                         | 2.                  |               | nniques to c                                     |                                                          |                                                                    |                                                             |                                                                 |                                                 | ioned in <mark>Sec</mark><br>ied in the res                                                        |                                                     |                                        |
|                         |                     |               |                                                  |                                                          |                                                                    |                                                             |                                                                 |                                                 | bustion stac                                                                                       |                                                     |                                        |
|                         |                     | estir         | mated by m<br>luding shutt                       | odelling ar                                              | nd approp                                                          | riate con                                                   | ditions base                                                    | ed on frec                                      | rounding of f<br>quency or pro<br>ct of any odd                                                    | ocedures                                            |                                        |
|                         |                     |               |                                                  |                                                          |                                                                    |                                                             |                                                                 |                                                 |                                                                                                    |                                                     | Cont.                                  |

| INTRODU                          |                    |                                                                                                 | HNIQU                                      |                                      |                                      | MISSIO                                  |                                     |                                             | <b>IMPAC</b>                           | די                                  |
|----------------------------------|--------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------|-------------------------------------|---------------------------------------------|----------------------------------------|-------------------------------------|
| Management M                     | aterials<br>inputs |                                                                                                 | Ground<br>water                            | Waste                                |                                      | Accidents                               | Noise                               | Monitoring                                  |                                        | Installation<br>issues              |
| Odour                            | Г                  | Fugitive emiss                                                                                  | ions                                       |                                      |                                      |                                         |                                     |                                             |                                        |                                     |
| BAT for odour<br>control (cont.) | 3.                 | Measures to pre-<br>building contain<br>airflows across<br>fast closing auto<br>category 2 abov | ment. This<br>doorways,<br>omatic doo      | s will also<br>extractio             | include<br>n to com                  | measures s<br>bustion or c              | such as tl<br>other aba             | he maintena<br>tement syste                 | nce of por<br>ems and t                | sitive<br>he use of                 |
|                                  |                    | Conventional he<br>heat to the prod<br>processes, whic<br>objectionable or                      | uct can lea<br>h can achi                  | ad to the<br>ieve the s              | release c<br>same obj                | f odours. T                             | here is a                           | a range of al                               | ternative i                            | unit                                |
|                                  |                    | <ul> <li>Ohmic heating has been us the ready more fouling mean base sauce &gt;90%).</li> </ul>  | ed to repla<br>eals sector<br>is that afte | ace the tra<br>. There<br>er one pro | aditional<br>are additi<br>oduct has | can heating<br>onal advan<br>been proce | ) process<br>tages reg<br>essed, th | es and has<br>garding clea<br>e plant is wa | wide appl<br>ning (as tl<br>ashed thro | ication in<br>hat no<br>ough with a |
|                                  |                    | High pressu<br>the process<br>100,000 psi.<br>dressings.                                        | requires fle                               | exible pa                            | ckaging t                            | hat can sta                             | nd the hi                           | gh pressure:                                | s of betwe                             | en 50,000 -                         |
|                                  |                    | Radio freque<br>cooking and<br>eliminates ex                                                    | shortening                                 | g of fats.                           | It offers                            | the advanta                             | ige of a u                          | iniform prod                                | uct tempe                              |                                     |
|                                  |                    | <ul> <li>Fugitive odo<br/>plant off-gas<br/>microbial act<br/>circuit.</li> </ul>               | es or anae                                 | erobic co                            | nditions i                           | n water circ                            | uits, prim                          | nary sedimer                                | ntation or                             | sludge. The                         |
|                                  | 4.                 | Odour from was to prevent offen are otherwise in                                                | sive odour                                 |                                      |                                      |                                         |                                     |                                             |                                        |                                     |
|                                  | 5.                 | If there are no o boundary. The                                                                 |                                            |                                      |                                      |                                         |                                     |                                             |                                        | tallation                           |

Odour plans, where needed, should be operating within the timescale given in Section 1.1. However, it should be noted that, if there are local problems, the Regulator is likely to require it to be programmed early within the list of work to be carried out by that date.

For existing activities, the operator should implement any agreed techniques to a timescale agreed with the Regulator.

| INTROD     | UCTIO               | N TEC                    | HNIQU           | JES   | El     | VISSIO    | NS    |            | MPAC    | T                      |
|------------|---------------------|--------------------------|-----------------|-------|--------|-----------|-------|------------|---------|------------------------|
| Management | Materials<br>Inputs | Activities/<br>abatement | Ground<br>water | Waste | Energy | Accidents | Noise | Monitoring | Closure | Installation<br>Issues |

#### 2.4 Groundwater

Groundwater protection legislation

## **Emissions to Groundwater**

The Groundwater Regulations came into force on 1<sup>st</sup> April 1999 (see Appendix 2 for equivalent legislation in Scotland and Northern Ireland). An IPPC permit will be subject to the following requirements under these Regulations:

- It shall not be granted at all if it would permit the direct discharge of a list I substance (Regulation i) 4(1)) (except in limited circumstances - see note 1 below).
- If the permit allows the disposal of a List I substance or any other activity which might lead to an ii) indirect discharge (see note 2 below) of a List I substance then prior investigation (as defined in Regulation 7) is required and the permit shall not be granted if this reveals that indirect discharges of List I substances would occur and in any event conditions to secure prevention of such discharges must be imposed (Regulation 4(2) and (3)).
- In the case of List II substances, permits allowing direct discharges or possible indirect iii) discharges cannot be granted unless there has been a prior investigation and conditions must be imposed to prevent groundwater pollution (Regulation 5).
- The Regulations contain further detailed provisions covering surveillance of groundwater iv) (Regulation 8); conditions required when direct discharges are permitted (Regulation 9); when indirect discharges are permitted (Regulation 10); and review periods and compliance (Regulation 11).

The principles, powers and responsibilities for groundwater protection in England and Wales, together with the Agency's policies in this regard, are outlined in the Agency's document "Policy and Practice for the Protection of Groundwater" (PPPG) (See Ref. 25). This outlines the concepts of vulnerability and risk and the likely acceptability from the Agency's viewpoint of certain activities within groundwater protection zones.

- Prior investigation of the potential effect on groundwater of on-site disposal activities or Δ discharges to groundwater. Such investigations will vary from case to case, but the Agency is likely to require a map of the proposed disposal area; a description of the underlying geology, hydrogeology and soil type, including the depth of saturated zone and guality of groundwater; the proximity of the site to any surface waters and abstraction points, and the relationship between ground and surface waters; the composition and volume of waste to be disposed of; and the rate of planned disposal.
- Surveillance This will also vary from case to case, but will include monitoring of groundwater в guality and ensuring the necessary precautions to prevent groundwater pollution are being undertaken.
- The Regulations state that, subject to certain conditions, the discharges of List I substances Note 1 to groundwater may be authorised if the groundwater is "permanently unsuitable for other uses". Advice must be sought from the Agency where this is being considered as a justification for such discharges.
- Note 2 An indirect discharge may be as simple as the use of timber posts impregnated with List I substances.
- List I and List II refer to the list in the Groundwater Regulations and should not be confused Note 3 with the similar lists in the Dangerous Substances Directive. They are quoted on the following page.

Identify if there may be a discharge of any List I or List II Application Form substances and, if any are identified, explain how the Question 2.4 requirements of the Groundwater Regulations 1998 have been . addressed.

### With the Application the operator should:

confirm that there are no direct or indirect emissions to groundwater of List I or List II substances 1. from the installation, or

where there are such releases, provide the information and surveillance arrangements described 2. in A and B above.

Under these Regulations the permit may not be granted if the situation is not satisfactory, therefore, with the application, the operator should supply information on list I and list II substances and if necessary, prior investigation and surveillance information:

| INTRODU                    | <b>IOITO</b>        | N                               | TEC                                         | HNIQU                                                                     | ES                                         | E         | MISSIC        | NS                | - I                                           | MPAC         | Т                      |
|----------------------------|---------------------|---------------------------------|---------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------|-----------|---------------|-------------------|-----------------------------------------------|--------------|------------------------|
|                            | laterials<br>Inputs |                                 | tivities/<br>atement                        | Ground<br>water                                                           | Waste                                      | Energy    | Accidents     | Noise             | Monitoring                                    | Closure      | Installation<br>Issues |
|                            | mputo               | ube                             |                                             | Water                                                                     |                                            |           |               |                   |                                               |              | 100000                 |
| Groundwater                | List I              |                                 |                                             |                                                                           |                                            |           |               |                   |                                               |              |                        |
|                            | 1 -(1)              | Sub                             | iect to sub                                 | o-paragraph                                                               | n (2) belo                                 | w a sub   | stance is in  | list I if it      | belongs to c                                  | one of the   | following              |
|                            |                     | fami                            | lies or gro                                 | oups of sub                                                               | stances-                                   |           |               |                   | -                                             |              | -                      |
| ist I and                  |                     | (a)                             |                                             | alogen corr<br>environmen                                                 |                                            | and subs  | stances whi   | ch may f          | orm such co                                   | mpounds      | in the                 |
| List II<br>substances      |                     | (b)                             |                                             | hosphorus                                                                 |                                            | nds;      |               |                   |                                               |              |                        |
| n the                      |                     | (c)                             |                                             | n compoun                                                                 |                                            |           |               |                   |                                               |              |                        |
| Groundwater<br>Regulations |                     | (d)<br>(e)<br>(f)<br>(g)<br>(h) | aquatic e<br>otherwis<br>mercury<br>cadmiun | environmen<br>e be in list<br>and its con<br>n and its co<br>oils and hyd | it (includi<br>II);<br>npounds;<br>mpounds | ng subst  |               |                   | eratogenic pr<br>nose properti                |              |                        |
|                            | 2.                  |                                 |                                             | s not in list<br>low risk of                                              |                                            |           |               |                   | ency to be ina<br>ition.                      | appropria    | te to list I o         |
|                            | List II             | [                               |                                             |                                                                           |                                            |           |               |                   |                                               |              |                        |
|                            | 1(1)                |                                 |                                             | s in list II if<br>r groups of                                            |                                            |           | armful effec  | t on grou         | indwater and                                  | l it belong  | is to one of           |
|                            |                     | (a)                             |                                             | wing metall                                                               |                                            |           |               | -                 | :                                             |              |                        |
|                            |                     |                                 | Zinc<br>Bariu                               |                                                                           | Tin                                        |           |               | Copper            | -                                             |              |                        |
|                            |                     |                                 |                                             | mium                                                                      | Nic<br>Bor                                 |           |               | Berylliun<br>Lead | 1                                             |              |                        |
|                            |                     |                                 | Uran                                        |                                                                           |                                            | enium     |               | Vanadiu           | m                                             |              |                        |
|                            |                     |                                 | Arse                                        |                                                                           | Col                                        |           |               | Antimon           |                                               |              |                        |
|                            |                     |                                 | Thall                                       | ium                                                                       | Mo                                         | ybdenur   |               | Telluriun         | -                                             |              |                        |
|                            |                     |                                 | Titan                                       | ium                                                                       | Silv                                       | rer       |               |                   |                                               |              |                        |
|                            |                     | (b)                             | biocides                                    | and their d                                                               | erivative                                  | s not app | pearing in li | st I;             |                                               |              |                        |
|                            |                     | (c)                             | compou                                      |                                                                           | o cause t                                  | he forma  |               |                   | or odour of g<br>aces in such                 |              |                        |
|                            |                     | (d)                             | formatio                                    |                                                                           | ompound                                    | s in wate | er, excludin  | g those v         | stances whic<br>which are bio                 | -            |                        |
|                            |                     | (e)                             | inorgani                                    | c compound                                                                | ds of pho                                  | sphorus   | and eleme     | ntal phos         | phorus;                                       |              |                        |
|                            |                     | (f)                             | fluorides                                   |                                                                           |                                            |           |               |                   |                                               |              |                        |
|                            |                     | (g)                             |                                             | a and nitrite                                                             |                                            |           |               |                   |                                               |              |                        |
|                            | (2)                 |                                 |                                             | s also in lis                                                             |                                            |           |               | -1                |                                               |              |                        |
|                            |                     | (a)                             | -                                           |                                                                           |                                            | -         | -             |                   | set out in pa                                 |              |                        |
|                            |                     | (b)                             | and                                         | en determi                                                                | neu by tr                                  | le Agenc  | y to be map   | propriate         | e to list I und                               | er paragr    | apri 1(2),             |
|                            |                     | (c)                             |                                             | en determince and bio                                                     | -                                          | -         | y to be app   | ropriate          | to list II havir                              | ng regard    | to toxicity,           |
|                            |                     | pow                             | ers under                                   | paragraph                                                                 | 1(2) or 2                                  | (2).      |               |                   | in relation to                                |              |                        |
|                            | 3(2)                |                                 |                                             |                                                                           |                                            |           |               |                   | ollowing a re<br>give effect to               |              |                        |
|                            | 4                   | this                            | Schedule                                    |                                                                           | inner as i                                 | t conside | ers appropr   |                   | effect of its d<br>shall make c               |              |                        |
|                            | and bi<br>are lik   | ocide<br>ely to                 | es from so                                  | urce crops.<br>n auxiliary                                                | Other the                                  | nan bioci | des associa   | ated with         | general use a<br>source crop<br>n cleaning e. | s, List II s | substances             |

## 2.5 Waste Handling

The normal nature and source of the waste from each activity is given in Section 2.3 and will be confirmed in detail in the operator's response to Section 3.1. In general the waste streams comprise:

- process wastes specific to the activity;
- residues of raw materials and product removed from wastewaters by drainage catchpots and screens;
- dust and particulate caught in abatement equipment, for example, cyclones and bag filters;
- product wasteage, for example, stored product which may have defrosted;
- boiler plant ash (some of which may be special waste);
- effluent plant sludge
- packaging.

Application Form Question 2.5

Characterise and quantify each waste stream and describe the proposed measures for waste management storage and handling.

### With the Application the operator should:

- 1. identify and quantify the waste streams;
- 2. identify the current or proposed handling arrangements;
- 3. describe the current or proposed position with regard to the techniques below or any others which are pertinent to the installation;

4. demonstrate that the proposals are BAT, by confirming compliance with the indicative requirements, by justifying departures (as described in Section 1.2 and in the Guide to Applicants) or alternative measures.

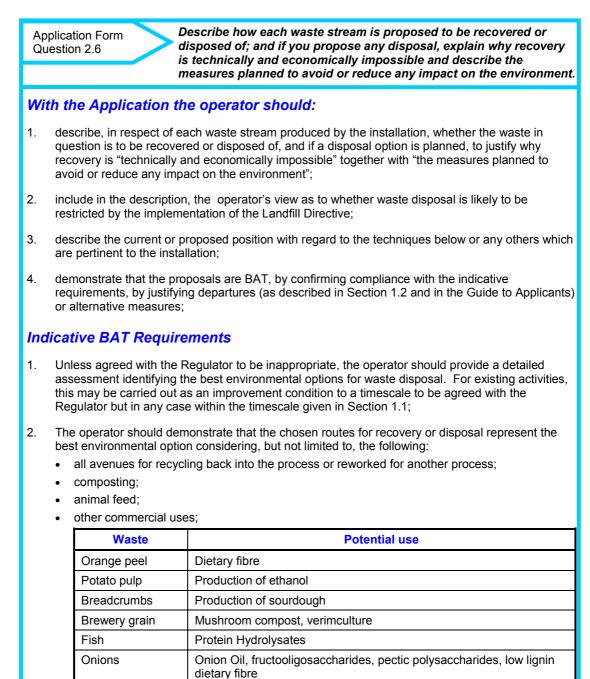
### Indicative BAT Requirements

General techniques for quantification, storage and handling

- A system should be maintained to record the quantity, nature, origin and where relevant, the destination, frequency of collection, mode of transport and treatment method of any waste which is disposed of or recovered.
- 2. Wherever practicable, waste should be segregated and the disposal route identified which should be as close to the point of production as possible.
- 3. Records should be maintained of any waste sent off-site (Duty of Care).
- 4. Storage areas should be located away from watercourses and sensitive boundaries e.g. adjacent to areas of public use and protected against vandalism.
- 5. Storage areas should be clearly marked and signed and containers should be clearly labelled.
- 6. The maximum storage capacity of storage areas should be stated and not exceeded. The maximum storage period for containers should be specified.
- 7. Appropriate storage facilities should be provided for special requirements such as for substances that are flammable, sensitive to heat or light etc., and incompatible waste types should be kept separate.
- 8. Containers should be stored with lids, caps and valves secured and in place. This also applies to emptied containers.
- 9. Storage containers, drums etc. should be regularly inspected.
- 10. Procedures should be in place to deal with damaged or leaking containers.
- 11. All appropriate steps to prevent emissions (e.g. liquids, dust, VOCs and odour) from storage or handling should be taken (see Sections 2.3.11, 2.3.12, 2.3.13 and 2.3.15.

BAT for waste

handling


| INTROD                           | UCTIC               | N TE                                                                                                                 | CHNIQ                                                                                     | UES                                                                                      | EI                                                | MISSIO                                                      | NS                                              |                                                               | MPAC                                             | T                                |
|----------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------|----------------------------------|
| Management                       | Materials<br>inputs | Activities/<br>abatement                                                                                             | Ground<br>water                                                                           | Waste                                                                                    | Energy                                            | Accidents                                                   | Noise                                           | Monitoring                                                    | Closure                                          | Installation<br>issues           |
| BAT for waste<br>handling (cont. | )<br>For e          | Most of the v<br>for animal fe<br>composting.<br>is made for t<br>existing activit<br>scale given in<br>scale agreed | vaste produ<br>ed, used in<br>It is therefo<br>heir remova<br>ies, the abo<br>Section 1.1 | ced by the<br>landspread<br>ore importan<br>I from the p<br>ove techniqu<br>I and the op | ling or is<br>nt that su<br>process a<br>ues shou | suitable for<br>itable waste<br>ind designa<br>Id be progra | waste tro<br>es are ide<br>ted stora<br>ammed f | eatment met<br>entified at an<br>age areas pro<br>or implemen | hods such<br>early sta<br>ovided.<br>tation with | h as<br>age provision<br>hin the |

| INTROD     | UCTIO | N TE                     | UES   | E      | VISSIO    | NS    |            | MPAC    | T                      |
|------------|-------|--------------------------|-------|--------|-----------|-------|------------|---------|------------------------|
| Management |       | Activities/<br>abatement | Waste | Energy | Accidents | Noise | Monitoring | Closure | Installation<br>issues |

# 2.6 Waste Recovery or Disposal

The Regulations require the regulator, in setting Permit conditions, to take account of certain general principles including that the installation in question should be operated in such a way that "waste production is avoided in accordance with Council Directive 75/442/EEC on waste; and where waste is produced it is recovered, or where this is technically or economically impossible it is disposed of, while avoiding or reducing the impact on the environment". The objectives of the National Waste Strategies should also be considered.

In order to meet this requirement the Regulator needs operators to provide the information below.



Iandspreading (see Refs. 18 and 19) which should be permitted only where the operator:

can demonstrate that it represents a genuine agricultural benefit or ecological improvement;

Cont.

BAT for waste recovery or disposal

| INTRODU                                             | CTIC              |                            | CHNIQ                                                                                                                                                                      | UES                                                                                                                                   | El                                                                                                                | VISSIO                                                                                                                  | NS                                                                                                     | I                                                                                                                                       | MPAC                                                                          | T                                                                |
|-----------------------------------------------------|-------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------|
| Management                                          | aterials<br>nputs | s Activities/<br>abatement | Ground<br>water                                                                                                                                                            | Waste                                                                                                                                 | Energy                                                                                                            | Accidents                                                                                                               | Noise                                                                                                  | Monitoring                                                                                                                              | Closure                                                                       | Installation issues                                              |
| BAT for waste<br>recovery or<br>disposal<br>(cont.) |                   | of cor<br>norm<br>techn    | nstruction, c<br>al and abno<br>iques;<br>lentified the<br>noted that la<br>1(3) and 17<br>see also M/<br>actice are is<br>s are identifi<br>boiler de-ior<br>ies, the ope | orrosion/er<br>rmal opera<br>ultimate fa<br>andspreadin<br>Schedule<br>Schedule<br>Schedule<br>Schedule<br>is and the<br>nisation and | osion me<br>tion, valid<br>te of the<br>ng will tak<br>3 para 7 a<br>of Good<br>e Departn<br>optimum<br>d treatme | chanisms, i<br>lated as new<br>substances<br>and the ope<br>Agricultural<br>nent of Agri<br>disposal ro<br>nt operation | materials<br>cessary b<br>in the so<br>der the W<br>erator sho<br>Practice<br>culture an<br>oute ident | related to m<br>by the appro<br>bil.<br>/aste Manag<br>buld have a p<br>). (For Norti<br>nd Rural De<br>tified, in part<br>be specified | pement Li<br>plan and j<br>hern Irela<br>velopmer<br>icular the<br>quantified | censing<br>iustification<br>nd the<br>nt (DARD).)<br>waste<br>1. |

| INTROD     | UCTIO | N TE |                        | UES | EM     | <b>IISSION</b> | S     |            | <b>MPAC</b> | Т                      |
|------------|-------|------|------------------------|-----|--------|----------------|-------|------------|-------------|------------------------|
| Management |       |      | Abatement<br>& control |     | Energy | Accidents      | Noise | Monitoring | Closure     | Installation<br>Issues |

## 2.7 Energy

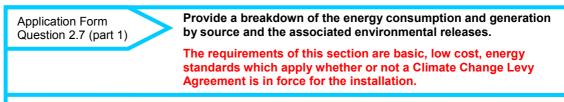
BAT for energy efficiency under the PPC Regulations will be satisfied provided that the operator meets the following conditions:

either

the operator meets the basic energy requirements in sections 2.7.1 and 2.7.2 below and is a
participant to a Climate Change Levy Agreement or Trading Agreement with the government

or

1.


• the operator meets the basic energy requirements in sections 2.7.1 and 2.7.2 below and the further sector-specific energy requirements in section 2.7.3 below.

Note that even where a Climate Change Levy Agreement or Trading Agreement is in place, it does not preclude the consideration of energy efficiency techniques, (including those identified in Section 2.7.3) as part of an integrated assessment of BAT where they impact on other emissions e.g. where:

- the choice of fuel impacts upon emissions other than carbon e.g. sulphur in fuel;
- the minimisation of waste by waste-to-energy, does not maximise energy efficiency e.g. by CHP;
- the most energy intensive abatement leads to the greatest reduction in other emissions.

Further guidance is given in the Energy Efficiency Guidance Note (Ref.15).

### 2.7.1 Basic energy requirements (1)



### With the Application the operator should:

provide the following Energy consumption information:

#### BAT for energy

Energy consumption information should be provided in terms of delivered energy and also converted to primary energy consumption by using the factors provided in Appendix 4 of the Energy Efficiency Guidance Note, or, where applicable, by the use of factors derived from on-site heat and/or power generation, or from direct (non-grid) suppliers. In the latter cases, the applicant shall provide details of such factors. Where energy is exported from the installation, the applicant should also provide this information. An example of the format in which this information should be presented is given in Table 2-5 below. The operator should also supplement this information with energy flow diagrams (e.g. "Sankey" diagrams or energy balances) showing how the energy is used throughout the process.

(Note that the permit will require this information to be submitted annually)

Table 2-5 -Example breakdown of delivered and primary energy consumption

| Energy source               |                | Energy consumption |            |
|-----------------------------|----------------|--------------------|------------|
| Energy source               | Delivered, MWh | Primary, MWh       | % of total |
| Electricity*                |                |                    |            |
| Gas                         |                |                    |            |
| Oil                         |                |                    |            |
| Other (operator to specify) |                |                    |            |

#### 2. provide the following Specific Energy consumption information

The operator should define and calculate the specific energy consumption of the activity (or activities) based on primary energy consumption for the products or raw material inputs which most closely match the main purpose or production capacity of the installation. The operator should provide a comparison of Specific Energy Consumption against any relevant benchmarks available for the sector. This information should be submitted annually.

#### 3. provide associated environmental emissions

This is dealt with in the operator's response to Section 3.1.

| INTRODU                       | СТІО               | N TECHNIQU                                                                                                                                                                                                                                                                                        | ES                                                                                                                                               | EMIS                                                                                                                        | SIONS                                                             |                    |                                 | MPAC              | Т                     |
|-------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------|---------------------------------|-------------------|-----------------------|
| -                             | aterials<br>Inputs | Main Abatement Activities & control                                                                                                                                                                                                                                                               | Vaste                                                                                                                                            | Energy Ac                                                                                                                   | cidents I                                                         | loise              | Monitoring                      | Closure           | Installatio<br>Issues |
|                               | 2.7.               | 2 Basic energy                                                                                                                                                                                                                                                                                    | requir                                                                                                                                           | ements (2                                                                                                                   | 2)                                                                |                    |                                 |                   |                       |
|                               | -                  |                                                                                                                                                                                                                                                                                                   | · ·                                                                                                                                              |                                                                                                                             | <u> </u>                                                          |                    | for improve                     | mont of a         |                       |
|                               |                    | blication Form<br>estion 2.7 (part 2)                                                                                                                                                                                                                                                             | effici                                                                                                                                           |                                                                                                                             | poseu me                                                          | isures             |                                 | inent of e        | nergy                 |
|                               |                    | u /                                                                                                                                                                                                                                                                                               |                                                                                                                                                  |                                                                                                                             |                                                                   |                    | are basic, lo                   |                   |                       |
|                               |                    |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                  | lards which<br>ement is in f                                                                                                |                                                                   |                    | or not Climat<br>allation.      | e Change          | Levy                  |
| BAT for energy                | 14/14              | h the Application th                                                                                                                                                                                                                                                                              |                                                                                                                                                  |                                                                                                                             |                                                                   |                    |                                 |                   |                       |
|                               |                    | h the Application th                                                                                                                                                                                                                                                                              | -                                                                                                                                                |                                                                                                                             |                                                                   |                    |                                 |                   |                       |
|                               |                    | describe the current or pr                                                                                                                                                                                                                                                                        | • •                                                                                                                                              |                                                                                                                             | •                                                                 |                    | •                               | /:                |                       |
|                               | 2.                 | provide justifications for r                                                                                                                                                                                                                                                                      | not using                                                                                                                                        | any of the te                                                                                                               | chniques d                                                        | escrib             | ed;                             |                   |                       |
|                               | 3.                 | provide an energy efficient                                                                                                                                                                                                                                                                       | • •                                                                                                                                              |                                                                                                                             |                                                                   |                    |                                 |                   |                       |
|                               |                    | <ul> <li>identifies all technique</li> <li>identifies the extent to</li> </ul>                                                                                                                                                                                                                    |                                                                                                                                                  |                                                                                                                             |                                                                   | -                  | those listed i                  | n Section 2       | 2.7.3;                |
|                               |                    | <ul> <li>prioritises the applical</li> </ul>                                                                                                                                                                                                                                                      |                                                                                                                                                  |                                                                                                                             |                                                                   |                    | al method pr                    | ovided in t       | he Energy             |
|                               |                    | Efficiency Guidance N                                                                                                                                                                                                                                                                             |                                                                                                                                                  |                                                                                                                             |                                                                   |                    |                                 | -                 |                       |
|                               |                    | <ul> <li>identifies any technique<br/>requiring further asserted</li> </ul>                                                                                                                                                                                                                       |                                                                                                                                                  |                                                                                                                             |                                                                   |                    |                                 | mpacts, the       | ereby                 |
|                               |                    | Where other appraisal m                                                                                                                                                                                                                                                                           |                                                                                                                                                  |                                                                                                                             |                                                                   |                    |                                 | l provido o       | vidonco               |
|                               |                    | that appropriate discount                                                                                                                                                                                                                                                                         |                                                                                                                                                  |                                                                                                                             |                                                                   |                    |                                 |                   |                       |
|                               |                    | Change Levy Agreement those measures in cate                                                                                                                                                                                                                                                      |                                                                                                                                                  |                                                                                                                             |                                                                   | -                  | V/CO <sub>2</sub> saved         | l Prior           | ity* for              |
| Fable 2.6 -<br>Example Format |                    | option                                                                                                                                                                                                                                                                                            | £k                                                                                                                                               | annual                                                                                                                      | lifetime                                                          |                    | £/tonne                         |                   | nentation             |
| or Energy                     |                    | 7MW CHP plant                                                                                                                                                                                                                                                                                     | 1,372                                                                                                                                            | 13,500                                                                                                                      | 135,000                                                           | 10<br>35           |                                 | high              |                       |
| fficiency<br>leasures         |                    | High efficiency motor<br>Compressed air                                                                                                                                                                                                                                                           | 0.5<br>n/a                                                                                                                                       | 2<br>5                                                                                                                      | 14<br>n/a                                                         | n/a                |                                 | medium<br>immedia |                       |
|                               |                    | * Indicative only, based o                                                                                                                                                                                                                                                                        | -                                                                                                                                                |                                                                                                                             | -                                                                 | n/a                |                                 | minear            | ate                   |
|                               |                    | -                                                                                                                                                                                                                                                                                                 |                                                                                                                                                  |                                                                                                                             |                                                                   | ما اما             |                                 |                   |                       |
|                               |                    | Where a CCLA is in place<br>condition to a timescale t<br>given in Section 1.1.                                                                                                                                                                                                                   |                                                                                                                                                  |                                                                                                                             |                                                                   |                    |                                 |                   |                       |
|                               |                    |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                  |                                                                                                                             |                                                                   |                    |                                 |                   |                       |
|                               | Indi               | icative BAT Require                                                                                                                                                                                                                                                                               | ments                                                                                                                                            |                                                                                                                             |                                                                   |                    |                                 |                   |                       |
| 3AT for energy                | <b>Indi</b><br>1.  | <i>Coperating, maintenance</i><br><i>Coperating, maintenance</i><br>checklists provided in Ap<br>as applicable:                                                                                                                                                                                   | e and ho                                                                                                                                         |                                                                                                                             |                                                                   |                    |                                 |                   |                       |
| BAT for energy                |                    | <b>Operating, maintenance</b><br>checklists provided in Ap                                                                                                                                                                                                                                        | e and ho<br>pendix 3<br>ess refrig                                                                                                               | of the Energy<br>eration and c                                                                                              | y Efficiency                                                      | Guida              | ance Note, in                   | the followi       | ng areas              |
| AT for energy                 |                    | <i>Operating, maintenance</i> checklists provided in Ap as applicable:<br>• air conditioning, proce                                                                                                                                                                                               | e and ho<br>pendix 3<br>ess refrige<br>r mainten                                                                                                 | of the Energy<br>eration and c<br>ance);                                                                                    | y Efficiency                                                      | Guida              | ance Note, in                   | the followi       | ng areas              |
| AT for energy                 |                    | <ul> <li>Operating, maintenance<br/>checklists provided in Ap<br/>as applicable:</li> <li>air conditioning, proce<br/>evaporator/condense</li> <li>operation of motors a</li> <li>compressed gas systematics</li> </ul>                                                                           | e and ho<br>pendix 3<br>ess refrig<br>r mainten<br>nd drives<br>ems (leal                                                                        | of the Energy<br>eration and c<br>ance);<br>;<br>;s, procedure                                                              | y Efficiency<br>ooling sys<br>es for use);                        | Guida              | ance Note, in                   | the followi       | ng areas              |
| AT for energy                 |                    | <ul> <li>Operating, maintenance<br/>checklists provided in Ap<br/>as applicable:</li> <li>air conditioning, proce<br/>evaporator/condense</li> <li>operation of motors a</li> <li>compressed gas syste</li> <li>steam distribution system</li> </ul>                                              | e and ho<br>pendix 3<br>ess refrigu<br>r mainten<br>nd drives<br>ems (leak<br>tems (leak                                                         | of the Energy<br>eration and c<br>ance);<br>;<br>ks, procedure<br>aks, traps, ins                                           | y Efficiency<br>ooling sys<br>es for use);                        | Guida              | ance Note, in                   | the followi       | ng areas              |
| AT for energy                 |                    | <ul> <li>Operating, maintenance<br/>checklists provided in Ap<br/>as applicable:</li> <li>air conditioning, proce<br/>evaporator/condense</li> <li>operation of motors a</li> <li>compressed gas syste</li> <li>steam distribution systeming</li> <li>space heating and how</li> </ul>            | e and ho<br>pendix 3<br>ess refrigur<br>mainten<br>nd drives<br>ems (leal<br>items (lea<br>t water s                                             | of the Energy<br>eration and c<br>ance);<br>;<br>ks, procedure<br>aks, traps, ins<br>ystems;                                | y Efficiency<br>ooling sys<br>es for use);                        | Guida              | ance Note, in                   | the followi       | ng areas              |
| 3AT for energy                |                    | <ul> <li>Operating, maintenance<br/>checklists provided in Ap<br/>as applicable:</li> <li>air conditioning, proce<br/>evaporator/condense</li> <li>operation of motors a</li> <li>compressed gas syste</li> <li>steam distribution systeming and how</li> <li>lubrication to avoid him</li> </ul> | e and ho<br>pendix 3<br>ess refrige<br>r mainten<br>nd drives<br>ems (leal<br>tems (leal<br>tems (leal<br>t water s<br>gh frictior               | of the Energy<br>eration and c<br>ance);<br>;<br>s, procedure<br>aks, traps, ins<br>ystems;<br>n losses;                    | y Efficiency<br>ooling sys<br>so for use);<br>sulation);          | Guida              | ance Note, in                   | the followi       | ng areas              |
| BAT for energy                |                    | <ul> <li>Operating, maintenance<br/>checklists provided in Ap<br/>as applicable:</li> <li>air conditioning, proce<br/>evaporator/condense</li> <li>operation of motors a</li> <li>compressed gas syste</li> <li>steam distribution systeming</li> <li>space heating and how</li> </ul>            | e and ho<br>pendix 3<br>ess refrige<br>r mainten<br>nd drives<br>ems (leak<br>tems (leak<br>tems (leak<br>t water s<br>gh frictior<br>g. optimis | of the Energy<br>eration and c<br>ance);<br>;<br>(xs, procedure<br>aks, traps, ins<br>ystems;<br>n losses;<br>sing excess a | y Efficiency<br>ooling syst<br>es for use);<br>sulation);<br>air; | <sup>,</sup> Guida | ance Note, in<br>eaks, seals, t | the followi       | ng areas              |

| INTRODU        | CTION TECHNIQU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ES EN                                                                                                        | IISSION                                                                        | S                                                      |                                                                  | IMPAC                                    | T                                        |  |  |  |  |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------|------------------------------------------|------------------------------------------|--|--|--|--|--|
| Management M   | aterials Main Abatement V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                              | Accidents                                                                      | Noise                                                  | Monitoring                                                       | Closure                                  | Installation                             |  |  |  |  |  |
|                | nputs Activities & control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                              |                                                                                |                                                        |                                                                  |                                          | Issues                                   |  |  |  |  |  |
|                | <ol> <li>Building services energy<br/>the Building Services Sec<br/>industries these issues m<br/>energy issues. They sho<br/>constitute more than 5% of<br/>4. Energy management tee<br/>2.1 noting, in particular, th<br/>reductions.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tion of the Energ<br>ay be of minor im<br>uld nonetheless f<br>of the total energ<br>c <b>hniques</b> should | y Efficiency (<br>pact and sho<br>ind a place ir<br>consumptic<br>be in place, | Guidance<br>buld not on<br>the prog<br>on.<br>accordin | Note. For e<br>distract effort<br>gramme, part<br>g to the requi | from the r<br>from the r<br>ticularly wh | nsive<br>najor<br>lere they<br>f Section |  |  |  |  |  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.7.3 Sector specific energy requirements                                                                    |                                                                                |                                                        |                                                                  |                                          |                                          |  |  |  |  |  |
|                | Application Form<br>Question 2.7 (part 3)Describe the proposed measures for improvement of energy<br>efficiency(only where the installation is <u>not</u> the subject of<br>Climate Change Levy Agreement).Where there is no Climate Change Levy Agreement in place,<br>operator should demonstrate the degree to which the further<br>energy efficiency measures identified in the implementation<br>plan, including those below, have been taken into considerar<br>for this sector and justify where they have not.With the Application the operator should:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                              |                                                                                |                                                        |                                                                  |                                          |                                          |  |  |  |  |  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                              |                                                                                |                                                        |                                                                  |                                          |                                          |  |  |  |  |  |
|                | 1. identify which of the meas<br>appraisal for the energy e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                              |                                                                                |                                                        | ties, and incl                                                   | ude them i                               | n the                                    |  |  |  |  |  |
|                | 2. describe the current or pr which are pertinent to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                              | vith regard to                                                                 | the tech                                               | nniques belov                                                    | v, or any o                              | thers                                    |  |  |  |  |  |
|                | <ol> <li>demonstrate that the propreduced to th</li></ol> |                                                                                                              |                                                                                |                                                        |                                                                  |                                          | Applicants)                              |  |  |  |  |  |
|                | Indicative BAT Require                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ments                                                                                                        |                                                                                |                                                        |                                                                  |                                          |                                          |  |  |  |  |  |
| BAT for energy | The following techniques shoul the Energy Efficiency Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                              | d where they                                                                   | meet the                                               | e financial cri                                                  | iteria in Ap                             | pendix 4 of                              |  |  |  |  |  |
|                | 1. Specific Energy Consul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nption                                                                                                       |                                                                                |                                                        |                                                                  |                                          |                                          |  |  |  |  |  |
|                | The operator should defir<br>activities) based on prima<br>most closely match the m<br>should provide a compari<br>available for the sector.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ry energy consur<br>ain purpose or pr<br>son of Specific E                                                   | nption for the<br>oduction cap<br>nergy Consu                                  | e product<br>bacity of t<br>mption a                   | s or raw mate<br>he installatio<br>gainst any re                 | erial inputs<br>n. The op                | which<br>erator                          |  |  |  |  |  |
|                | 2. Energy efficiency techn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | iques                                                                                                        |                                                                                |                                                        |                                                                  |                                          |                                          |  |  |  |  |  |
|                | The following techniques<br>and emissions from on-si<br>emissions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                              |                                                                                |                                                        |                                                                  |                                          |                                          |  |  |  |  |  |
|                | <ul> <li>heat recovery from, fo<br/>where a plate heat ex</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | changer heat has                                                                                             | a regenerat                                                                    | ion capa                                               | city up to 94%                                                   | %;                                       |                                          |  |  |  |  |  |
|                | - in-tunnel and tray<br>heat from exhaust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | gasses and to he                                                                                             | eat inlet air.                                                                 |                                                        |                                                                  |                                          | o remove                                 |  |  |  |  |  |
|                | <ul> <li>heat recovery from co</li> <li>Use of multi effect evaluation</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                              | -                                                                              |                                                        | -                                                                | peeling;                                 |                                          |  |  |  |  |  |
|                | <ul> <li>Ose of multi-effect evaluation of water</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                              |                                                                                |                                                        | moauoris,                                                        |                                          |                                          |  |  |  |  |  |
|                | <ul> <li>good insulation;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                              | <u> </u>                                                                       | -,                                                     |                                                                  |                                          |                                          |  |  |  |  |  |
|                | <ul> <li>plant layout to reduce</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                              |                                                                                |                                                        |                                                                  |                                          |                                          |  |  |  |  |  |
|                | <ul> <li>phase optimisation of</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | electronic contro                                                                                            | motors;                                                                        |                                                        |                                                                  |                                          |                                          |  |  |  |  |  |

| INTROD                   |                  |                                      |                                                 | ECHN                                           | VIQ                                             |                                                            | El                                                       | VISSIO                                                         | <b>NS</b>                                                 |                                                                                                 | IMPAC                                                     | Т                                               |
|--------------------------|------------------|--------------------------------------|-------------------------------------------------|------------------------------------------------|-------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------|
| Management               | Materia<br>Input |                                      | lain<br>ivities                                 | Abater<br>& con                                |                                                 | Waste                                                      | Energy                                                   | Accidents                                                      | Noise                                                     | Monitoring                                                                                      | Closure                                                   | Installation<br>Issues                          |
| BAT for energy<br>cont.) | v                | • b<br>f                             | pelt co<br>or fug                               | nveying                                        | inste<br>eases                                  | ad of pn                                                   | eumatic(a                                                | Ithough this                                                   | must be b                                                 | order to rec<br>palanced aga<br>instead of ba                                                   | iinst higher                                              |                                                 |
|                          |                  | as w<br>carri<br>• c                 | /ell as<br>ied ou                               | energy<br>t irrespe                            | consi<br>ective                                 | umption.<br>of any n                                       | This is th<br>ational ag                                 | erefore a BA<br>reements.                                      | AT trade-c                                                | e impact on t<br>off decision w<br>feedwater pr                                                 | hich may n                                                | eed to be                                       |
|                          | 3.               | Ene                                  | rgy si                                          | upply te                                       | echnie                                          | ques                                                       |                                                          |                                                                |                                                           |                                                                                                 |                                                           |                                                 |
|                          |                  | of ga<br>dete                        | as pov<br>ermine                                | wered Cl<br>d by the                           | HP wi<br>Clim                                   | here gas<br>ate Cha                                        | s is already                                             | / the current                                                  | energy so<br>The opera                                    | y reasons (so<br>ource), the ti<br>ator should,                                                 | ming will be                                              | ;                                               |
|                          |                  |                                      | •                                               | ve of whe                                      |                                                 |                                                            | •                                                        | Levy Agree                                                     | ment is in                                                | place, wher                                                                                     | e there are                                               | other BAT                                       |
|                          |                  | • t                                  | he po                                           |                                                | ninimi                                          | sation of                                                  | waste em                                                 |                                                                |                                                           | n e.g. sulphu<br>f energy fron                                                                  |                                                           | flicts with                                     |
|                          |                  | • ti                                 | he op                                           | erator sł                                      | hould                                           | provide                                                    | justificatio                                             | n that the pr                                                  | oposed or                                                 | r current situ                                                                                  | ation repres                                              | sents BAT.                                      |
|                          | 4.               | has<br>not a<br>why<br>site,<br>plan | been<br>approp<br>this o<br>that th<br>t is too | conside<br>priate, th<br>ption ma<br>he instal | red an<br>ne pre<br>ay not<br>llation<br>If the | nd shoul<br>ferred fu<br>be appl<br>i is too s<br>re is no | d justify ar<br>iel, from a<br>icable are<br>mall for th | ny decision to<br>n environme<br>the unavaila<br>e available g | o install a<br>intal point<br>ability of g<br>jas turbine | neat and pov<br>non-CHP op<br>of view, is n<br>as, the energes<br>or that the<br>closure withir | otion. Wher<br>atural gas.<br>gy balance a<br>projected l | e CHP is<br>Reasons<br>across the<br>ife of the |
|                          | 5.               | than<br>and<br>Auth<br>appl          | 50MV<br>supple<br>sority A                      | N, opera<br>ement S<br>Air Pollu<br>e to plant | ators s<br>331.01<br>Ition C                    | should c<br>) and th<br>Control g                          | onsult the<br>e operator<br>uidance.                     | IPPC guidar<br>s of plant of<br>On IPPC ins                    | nce on po<br>20-50MW<br>tallations                        | so relevant.<br>wer generati<br>/ should con<br>this guidanc<br>.501 Waste I                    | on (referen<br>sult the Loc<br>e will be gei              | ce S2 1.01<br>al<br>nerally                     |

For existing activities, the operator should implement any agreed techniques to a timescale agreed with the Regulator.

| INTRODUCTION TECHNIQU |                     |                          | UES             | ΕM    | EMISSIONS |           |       | IMPACT     |         |                     |
|-----------------------|---------------------|--------------------------|-----------------|-------|-----------|-----------|-------|------------|---------|---------------------|
| Management            | Materials<br>inputs | Activities/<br>abatement | Ground<br>water | Waste | Energy    | Accidents | Noise | Monitoring | Closure | Installation issues |

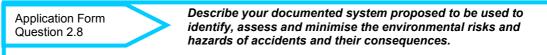
## 2.8 Accidents and their Consequences

Guidance

IPPC requires as a general principle that necessary measures should be taken to prevent accidents which may have environmental consequences, and to limit those consequences. This section covers general areas of any installation operations which have the potential for accidental emission.

The typical environmental risks associated with the sectors are the potential for spillage of high organic strength liquids from leaks, spillages or the overfilling of vessels often compounded by overloading of the effluent system and cross connected drainage systems.

Hazardous materials commonly stored on installations include:


- cleaning and sanitisation chemicals;
- effluent treatment chemicals;
- ammonia and ethylene glycol, and other refrigerants;
- fuel.

The Control of Major Accident Hazards Regulations 1999 (COMAH) (see Appendix 2 for equivalent legislation in Scotland and Northern Ireland) regime applies to major hazards. For accident aspects covered by COMAH, reference should be made to any reports already held by the Regulator. However, the accident provisions under IPPC may fall beneath the threshold for major accident classification under COMAH and therefore consideration should be given to smaller accidents and incidents as well. Guidance, (see Ref. 20). prepared in support of the COMAH Regulations may also be of help to IPPC operators (whether or not they are covered by the COMAH regime) in considering ways to reduce the risks and consequences of accident.

General management requirements are covered in Section 2.1. For accident management, there are three particular components:

- identification of the hazards posed by the installation/activity;
- assessment of the risks (hazard x probability) of accidents and their possible consequences;
- implementation of **measures to reduce the risks** of accidents, and contingency plans for any accidents that occur.

The obvious threshold re COMAH is where an installation is storing over 50 tonnes of ammonia for refrigerant purposes. If an installation is subject to COMAH, there is an element of overlap between IPPC and COMAH and it is recognised that some systems and information for both regimes may be interchangeable.



### With the Application the operator should:

- 1. describe the current or proposed position with regard to the techniques below or any others which are pertinent to the installation;
- demonstrate that the proposals are BAT, by confirming compliance with the indicative requirements, by justifying departures (as described in Section 1.2 and in the Guide to Applicants) or alternative measures;
- 3. identify any issues which may be critical.

### Indicative BAT Requirements

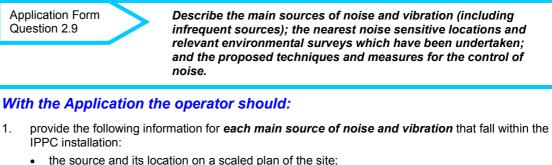
- 1. A structured accident management plan should be submitted to the Regulator within the timescale given in Section 1.1; which should:
  - **a.** *identify the hazards* to the environment posed by the installation. Particular areas to consider may include, but should not be limited to, the following:
    - transfer of substances (e.g. loading or unloading from or to vessels);
    - cleaning (see section 2.3.10);
    - storage of fuel and ancillary chemicals;
    - overfilling of vessels;
    - failure of plant and/or equipment (e.g. over-pressure of vessels and pipework, blocked drains);

BAT for control of accidents

| INTRODUC       | TION     | TEC                                                                                                                                                                                                                                                                                  | HNIQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UES                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E١                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>AISSION</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S                                                                                                                                                                                                                                                                                                                                                                                      | I                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MPAC                                                                                                                                                                                                                                                                                  | Т                                                                           |
|----------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Manadement     |          | ctivities/                                                                                                                                                                                                                                                                           | Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Waste                                                                                                                                                                                                                                                                                                                                                                                                                                                | Energy                                                                                                                                                                                                                                                                                                                                                                                                                                             | Accidents                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Noise                                                                                                                                                                                                                                                                                                                                                                                  | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                             | Closure                                                                                                                                                                                                                                                                               | Installation                                                                |
| ° in           | outs at  | atement                                                                                                                                                                                                                                                                              | water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                        | Ű                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                       | ISSUES                                                                      |
| Management Mat | erials A | ctivities/<br>vatement<br>failu<br>failu<br>failu<br>failu<br>mak<br>prev<br>unw<br>emis<br>stea<br>vanc<br>Assess<br>viewed<br>1. wha<br>2. wha<br>3. whe<br>rece<br>4. wha<br>5. wha<br>envi<br>6. wha<br>accii<br>The dep<br>its locat<br>the re<br>diffic<br>identify<br>c1. the | Ground<br>water<br>re of cont<br>ing the win<br>renting ind<br>anted rea<br>ssion of an<br>im main is<br>dalism.<br>t are the risks<br>t as addres<br>t is the es<br>t gets out<br>re does it<br>re does it<br>re does it<br>re does it<br>t are the cont<br>t and typion. The<br>scale and<br>vities;<br>risks to are<br>nature of to<br>culty in de<br>t the tech<br>e following<br>an inven<br>which con<br>forgotter<br>damagin<br>destroy i<br>changes<br>procedu<br>compatil<br>contact; | Waste<br>ainment (<br>ain firewa<br>rong conr<br>compatibl<br>ctions an<br>n effluent<br>sues;<br>s - having<br>sing six t<br>timated p<br>and how<br>get to? (I<br>conseque<br>overall ris<br>rent or re-<br>lor reduc<br>pe of ass<br>main fact<br>nature of<br>eas of po<br>the install<br>ciding an<br><b>niques r</b><br>g techniqu<br>tory shou<br>ould have<br>n that mai<br>ng if they<br>ts ecosys<br>to the in<br>res shoul<br>polity with | Energy<br>(e.g. bund a<br>laters;<br>nections in<br>e substance<br>d/or runaw<br>before add<br>pasic quest<br>probability of<br>much? (F<br>Predictions<br>ences? (Co<br>ks? (Dete<br>duce the ri-<br>ce their env<br>essment w<br>ors which s<br>f the accide<br>pulation and of<br>d justifying<br><b>pecessary</b><br>ues, which<br>ald be main<br>environme<br>ny apparer<br>escape (e.<br>stem). The<br>ventory;<br>d be in pla<br>other subs | Accidents<br>and/or overfil<br>drains or oth-<br>es coming in<br>ay reactions;<br>equate check<br>the hazards,<br>ions:<br>of their occurr<br>tisk evaluation<br>for the emiss<br>onsequence a<br>rmination of t<br>sk? (Risk mai<br>ironmental co<br>ill depend on<br>should be tak<br>ent hazard pro-<br>the adequace<br>to reduce th<br>are relevant<br>tained of sub<br>ental consequ<br>itly innocuous<br>g, a tanker of<br>Permit will re-<br>ce for checkin<br>tances with v | Noise<br>ling of dr<br>er syster<br>to contact<br>ing of its<br>the proc<br>rence? (S<br>n of the proc<br>sion – will<br>assessme<br>he overa<br>nagement<br>onseque<br>the chait<br>en into a<br>esented<br>nagement<br>onseque<br>the chait<br>en into a<br>esented<br>nament (re<br>otherwis<br>sy of the<br><b>rences</b> if<br>s substant<br>final spi<br>equire the<br>other wis | Monitoring<br>rainage sump<br>ms;<br>ct;<br>ccomposition<br>ess of asses<br>Source freque<br>event);<br>hat are the p<br>ent – the effe<br>all risk and its<br>nt – measure<br>nces).<br>racteristics o<br>account are:<br>by the install<br>eceptors);<br>se of the actii<br>risk control to<br><b>including:</b><br>installations:<br>, present or I<br>they escape<br>nces can be<br>led into a wa<br>re Regulator<br>naterials and<br>ey may accid | Closure<br>os);<br>has take<br>sing the r<br>ency);<br>athways a<br>ects on the<br>significant<br>exts on the<br>significant<br>es to preve<br>f the insta<br>lation and<br>vities and<br>echniques<br>ikely to be<br>environm<br>atercourse<br>to be noti<br>wastes to<br>entally co | Installation<br>issues                                                      |
|                |          | •                                                                                                                                                                                                                                                                                    | damagin<br>destroy i<br>changes<br>procedu<br>compatil<br>contact;<br>adequat<br>provided<br>to ensur                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ig if they<br>ts ecosys<br>to the in<br>res shoul<br>bility with<br>e storage<br>l;<br>e that cor                                                                                                                                                                                                                                                                                                                                                    | escape (e.<br>stem). The<br>ventory;<br>d be in pla<br>other subs<br>arrangem                                                                                                                                                                                                                                                                                                                                                                      | g. a tanker of<br>Permit will re<br>ce for checkir                                                                                                                                                                                                                                                                                                                                                                                                                                  | i milk spi<br>equire th<br>ng raw m<br>which the<br>materials<br>nergency                                                                                                                                                                                                                                                                                                              | lled into a wa<br>e Regulator<br>naterials and<br>ey may accid<br>s, products an<br>r situations, c                                                                                                                                                                                                                                                                                                                                                    | atercourse<br>to be noti<br>wastes to<br>entally co<br>nd wastes<br>considerat                                                                                                                                                                                                        | e could<br>fied of any<br>o ensure<br>me into<br>s should be<br>tion should |
|                |          | •                                                                                                                                                                                                                                                                                    | systems<br>readings<br>process<br>preventa<br>from the<br>appropri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | based or<br>such as<br>paramete<br>tive tech<br>moveme<br>ate conta                                                                                                                                                                                                                                                                                                                                                                                  | n micropro<br>ultrasonic<br>ers;<br>niques, suc<br>ent of vehic                                                                                                                                                                                                                                                                                                                                                                                    | cessor contro<br>gauges, high<br>ch as suitable<br>les, should be<br>puld be provid                                                                                                                                                                                                                                                                                                                                                                                                 | el and pa<br>-level wa<br>barriers<br>e include                                                                                                                                                                                                                                                                                                                                        | ssing valve of<br>arnings and p<br>to prevent of<br>ed as approp                                                                                                                                                                                                                                                                                                                                                                                       | control, ta<br>process in<br>lamage to<br>riate;                                                                                                                                                                                                                                      | nk level<br>Iterlocks and<br>equipment                                      |
|                |          | •                                                                                                                                                                                                                                                                                    | material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nent shou<br>, for exan                                                                                                                                                                                                                                                                                                                                                                                                                              | nple the us                                                                                                                                                                                                                                                                                                                                                                                                                                        | designed to f<br>e of gradients<br>should be im                                                                                                                                                                                                                                                                                                                                                                                                                                     | s (hollow                                                                                                                                                                                                                                                                                                                                                                              | s) and kerbs                                                                                                                                                                                                                                                                                                                                                                                                                                           | ;                                                                                                                                                                                                                                                                                     |                                                                             |
|                |          | -                                                                                                                                                                                                                                                                                    | tanks (lic<br>high-leve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | quid or po<br>el cut-off,                                                                                                                                                                                                                                                                                                                                                                                                                            | owder), e.g<br>and batch                                                                                                                                                                                                                                                                                                                                                                                                                           | . level measu<br>metering;                                                                                                                                                                                                                                                                                                                                                                                                                                                          | irement,                                                                                                                                                                                                                                                                                                                                                                               | independent                                                                                                                                                                                                                                                                                                                                                                                                                                            | t high-leve                                                                                                                                                                                                                                                                           | el alarms,                                                                  |
|                |          | •                                                                                                                                                                                                                                                                                    | appropri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ate and s                                                                                                                                                                                                                                                                                                                                                                                                                                            | should inclu                                                                                                                                                                                                                                                                                                                                                                                                                                       | to prevent u<br>ide maintena<br>on log/diary to                                                                                                                                                                                                                                                                                                                                                                                                                                     | nce arra                                                                                                                                                                                                                                                                                                                                                                               | ngements wl                                                                                                                                                                                                                                                                                                                                                                                                                                            | nere nece                                                                                                                                                                                                                                                                             | ssary;                                                                      |
|                |          |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ormal events                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                       |                                                                             |

| INTRODUCTION | TECH                                                                  | INIQ                                                                                               | UES                                                                                                              | EN                                                                                                                                 | IISSION                                                                                                                                                                                | IS                                                                                                                     | 11                                                                                                                                           | MPAC                                                                                                           | Т                                                                          |
|--------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Manadement   |                                                                       | round<br>vater                                                                                     | Waste                                                                                                            | Energy                                                                                                                             | Accidents                                                                                                                                                                              | Noise                                                                                                                  | Monitoring                                                                                                                                   | Closure                                                                                                        | Installation<br>issues                                                     |
| [            | in                                                                    | cidents                                                                                            | ;                                                                                                                |                                                                                                                                    | ished to ider                                                                                                                                                                          |                                                                                                                        |                                                                                                                                              |                                                                                                                |                                                                            |
|              |                                                                       | ie roles<br>e identi                                                                               |                                                                                                                  | onsibilities                                                                                                                       | of personne                                                                                                                                                                            | el involve                                                                                                             | d in accident                                                                                                                                | manager                                                                                                        | nent should                                                                |
|              |                                                                       |                                                                                                    |                                                                                                                  |                                                                                                                                    | ailable on ho<br>or dispersion                                                                                                                                                         |                                                                                                                        |                                                                                                                                              |                                                                                                                |                                                                            |
|              | C                                                                     | ommun                                                                                              |                                                                                                                  | nong opera                                                                                                                         | ce to avoid ir<br>ations staff d                                                                                                                                                       |                                                                                                                        |                                                                                                                                              |                                                                                                                |                                                                            |
|              |                                                                       |                                                                                                    | -                                                                                                                |                                                                                                                                    | hould be in p<br>d be establis                                                                                                                                                         |                                                                                                                        | relevant aut                                                                                                                                 | horities ar                                                                                                    | hd                                                                         |
|              | ei<br>pi<br>re                                                        | mergen<br>rocedur<br>edress t                                                                      | icy servic<br>es shoul<br>his.                                                                                   | es both be<br>d include th                                                                                                         | fore and in the assessme                                                                                                                                                               | he event<br>ent of har                                                                                                 | of an accide<br>m caused ar                                                                                                                  | nt. Post-a<br>id steps n                                                                                       | accident<br>eeded to                                                       |
|              | a                                                                     | ccident                                                                                            | , such as                                                                                                        | oil spillage                                                                                                                       | es should be<br>equipment,<br>rocedures;                                                                                                                                               |                                                                                                                        |                                                                                                                                              |                                                                                                                |                                                                            |
|              |                                                                       |                                                                                                    | -                                                                                                                |                                                                                                                                    | ents should b                                                                                                                                                                          |                                                                                                                        |                                                                                                                                              |                                                                                                                |                                                                            |
|              |                                                                       |                                                                                                    |                                                                                                                  |                                                                                                                                    | on of fugitive<br>and in addit                                                                                                                                                         |                                                                                                                        |                                                                                                                                              |                                                                                                                | int                                                                        |
|              | -                                                                     | a bur                                                                                              |                                                                                                                  | or sump co                                                                                                                         | place to ens<br>onnected to a                                                                                                                                                          |                                                                                                                        |                                                                                                                                              |                                                                                                                |                                                                            |
|              | -                                                                     | autor                                                                                              | natic pun                                                                                                        | np to stora                                                                                                                        | be equipped<br>ge (not to dis<br>Is are kept to                                                                                                                                        | scharge);                                                                                                              | there should                                                                                                                                 | l be a sys                                                                                                     | or with<br>tem in place                                                    |
|              | -                                                                     |                                                                                                    | level alar<br>control;                                                                                           | ms etc. sh                                                                                                                         | ould not be r                                                                                                                                                                          | outinely (                                                                                                             | used as the p                                                                                                                                | orimary m                                                                                                      | ethod of                                                                   |
|              |                                                                       |                                                                                                    |                                                                                                                  | other spe<br>and 2 abo                                                                                                             | cific techniqu<br>ve                                                                                                                                                                   | ies identi                                                                                                             | fied as nece                                                                                                                                 | ssary to n                                                                                                     | ninimise the                                                               |
|              | te                                                                    | esting to                                                                                          | the sam                                                                                                          | e standard                                                                                                                         | ndby plant sl<br>Is as the mai                                                                                                                                                         | n plant;                                                                                                               |                                                                                                                                              |                                                                                                                | ance and                                                                   |
|              | cc<br>cc<br>w<br>ac<br>of<br>pr<br>al<br>E                            | ontamir<br>ontaine<br>ontain s<br>aters o<br>chievec<br>f accide<br>revent t<br>lso take<br>merger | nated wat<br>d and wh<br>surges an<br>r sewer.<br>I. There<br>ental emis<br>cheir entry<br>account<br>ncy storag | ers and sp<br>ere necess<br>of storm-wa<br>Sufficient s<br>should also<br>ssion of raw<br>y into water<br>of the add<br>ge lagoons | e waters, em<br>illages of che<br>sary, routed t<br>ater flows, ar<br>storage shou<br>b be spill con<br>v materials, p<br>r. Any emerg<br>itional firewa<br>may be nee<br>see Refs. 16 | emicals s<br>to the effl<br>ad treated<br>ild be pro-<br>tringency<br>products<br>gency fire<br>ter flows<br>ded to pr | hould, where<br>uent system<br>before emis<br>vided to ens<br>procedures<br>and waste m<br>ewater collect<br>or fire-fightir<br>event contar | e appropri<br>, with prov<br>ssion to co<br>ure that th<br>to minimis<br>aterials a<br>tion syste<br>ng foams. | vision to<br>ontrolled<br>his could be<br>se the risk<br>nd to<br>m should |
|              | a<br>m                                                                | ccidenta<br>ay be i                                                                                | al emissio<br>nadvisab                                                                                           | ons from ve                                                                                                                        | en to the posi<br>ents and safe<br>y grounds, a                                                                                                                                        | ety relief                                                                                                             | valves/bursti                                                                                                                                | ng discs.                                                                                                      | Where this                                                                 |
|              | Sector s                                                              |                                                                                                    |                                                                                                                  |                                                                                                                                    |                                                                                                                                                                                        |                                                                                                                        |                                                                                                                                              |                                                                                                                |                                                                            |
|              |                                                                       |                                                                                                    |                                                                                                                  |                                                                                                                                    | ctor specific:                                                                                                                                                                         |                                                                                                                        |                                                                                                                                              |                                                                                                                |                                                                            |
|              | • in                                                                  | terlock                                                                                            | ing of che                                                                                                       | emical dosi                                                                                                                        | es block drai<br>ng pumps wi<br>ation of clean                                                                                                                                         | ith cleani                                                                                                             | ng operation                                                                                                                                 | s in order                                                                                                     | to prevent                                                                 |
|              | <ul> <li>th</li> <li>ha</li> <li>th</li> <li>w</li> <li>pr</li> </ul> | ie opera<br>ave in p<br>ie risks<br>hich de<br>rovisior                                            | ator shou<br>blace, and<br>such as<br>al with th                                                                 | ld have ide<br>d supply co<br>bulking or o<br>lese events                                                                          | entified the m<br>ppies with the<br>other breakd<br>if they occu<br>nt buffer stor                                                                                                     | ajor risks<br>applicat<br>own of th<br>ir, includi                                                                     | ion, procedu<br>le wastewate<br>ng reducing                                                                                                  | res which<br>er treatme<br>load if neo                                                                         | minimise<br>nt plant and<br>cessary;                                       |
|              |                                                                       |                                                                                                    | activities                                                                                                       | :                                                                                                                                  |                                                                                                                                                                                        |                                                                                                                        |                                                                                                                                              |                                                                                                                |                                                                            |
|              |                                                                       | c2 and                                                                                             |                                                                                                                  |                                                                                                                                    | mmed for im<br>re should be                                                                                                                                                            |                                                                                                                        |                                                                                                                                              |                                                                                                                |                                                                            |
| 94           |                                                                       |                                                                                                    | Draft Ve                                                                                                         | ersion 3, J                                                                                                                        | uly 2001                                                                                                                                                                               |                                                                                                                        |                                                                                                                                              | Food                                                                                                           | and Drink                                                                  |

| INTROD     | UCTIO            | N TEO                    | CHNIQ           | UES   | EN     | <b>AISSION</b> | IS    | II         | MPAC    | Т                   |
|------------|------------------|--------------------------|-----------------|-------|--------|----------------|-------|------------|---------|---------------------|
| Management | Materials inputs | Activities/<br>abatement | Ground<br>water | Waste | Energy | Accidents      | Noise | Monitoring | Closure | Installation issues |


#### 2.9 **Noise and Vibration**

Within this section "noise" should be taken to refer to "noise and/or vibration" as appropriate, detectable beyond the site boundary.

The PPC Regulations require installations to be operated in such a way that "all the appropriate preventative measures are taken against pollution, in particular through the application of BAT'. The definition of pollution includes "emissions which may be harmful to human health or the quality of the environment, cause offence to human senses or impair or interfere with amenities and other legitimate uses of the environment". BAT is therefore likely to be similar, in practice, to the requirements of the statutory nuisance legislation, which requires the use of "best practicable means", to prevent or minimise noise nuisance.

In the case of noise, "offence to any human senses" can normally be judged by the likelihood of complaints, but in some cases it may be possible to reduce noise emissions still further at reasonable costs, and this may exceptionally therefore be BAT for noise emissions.

The noise and/or vibration related limits and conditions to be imposed will be determined by the Agency in discussion with both the Local Authority and the operator in accordance with the joint Memorandum of Understanding and the guidance "Assessment and Control of Environmental Noise and Vibration from Industrial Activities", (see Ref. 21) and with due regard for any local noise-reduction initiatives.



- whether continuous/ intermittent, fixed or mobile;
- the hours of operation;
- its description, (e.g. clatter, whine, hiss, screech, hum, bangs, clicks, thumps or tonal elements);
- its contribution to overall site noise emission (categorise each as high, medium or low unless supporting data is available).

A common sense approach needs to be adopted in determining which sources to include. The ones which need to be considered are those which may have environmental nuisance impact; e.g. a small unit could cause an occupational noise issue in an enclosed space but would be unlikely to cause an environmental issue. Conversely a large unit or a number of smaller units enclosed within a building could, for example, cause a nuisance if doors are left open. It must also be remembered that noise, which is not particularly noticeable during the day, may become more noticeable at night.

- provide the information required in (1) for each source plus its times of operation. For *Infrequent* 2. sources of noise and vibration, not listed above that fall within the IPPC installation: (such as infrequently operated/ seasonal operations, cleaning/maintenance activities, on-site deliveries/collections/transport or out-of-hours activities, emergency generators or pumps and alarm testing),
- 3. identify the nearest noise-sensitive sites (typically dwellings, parkland and open spaces schools, hospitals and commercial premises may be, depending upon the activities undertaken there) and any other points/boundary where conditions have been applied by Local Authority officers or as part of a planning consent, relating to:
  - the local environment: (a)
    - provide an accurate map or scaled plan showing grid reference, nature of the receiving site, distance and direction from site boundary;

| INTRODU                                      | СТІС    | ON TEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CHNIQ                                                                                                                                      | UES                                                                                                                           | FN                                                                                                                                                   | /ISSIONS                                                                                                                                                                                                                          | IMPACT                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|----------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| NA                                           | aterial |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ground                                                                                                                                     |                                                                                                                               |                                                                                                                                                      |                                                                                                                                                                                                                                   | Installation                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Management                                   | nputs   | abatement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | water                                                                                                                                      | Waste                                                                                                                         | Energy                                                                                                                                               | Accidents Nois                                                                                                                                                                                                                    | Monitoring Closure issues                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                              | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <i>a.</i> ., .                                                                                                                             |                                                                                                                               |                                                                                                                                                      |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | sensitive                                                                                                                                  |                                                                                                                               |                                                                                                                                                      | e to other locations                                                                                                                                                                                                              | (i.e. boundary fence or surrogate for                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                            | • •                                                                                                                           |                                                                                                                                                      | by the Local Author                                                                                                                                                                                                               | rity (day/evening/night*);                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                                              |         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                            |                                                                                                                               | -                                                                                                                                                    | -                                                                                                                                                                                                                                 | on operating times, technologies etc;                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                              |         | <ul> <li>any</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | requireme                                                                                                                                  | ents of ar                                                                                                                    | ny legal not                                                                                                                                         | tices etc.                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                              |         | (c) the nois                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | se environ                                                                                                                                 | ment:                                                                                                                         |                                                                                                                                                      |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                          |                                                                                                                               |                                                                                                                                                      | (day/night/evening                                                                                                                                                                                                                | • • •                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                              |         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                            | -                                                                                                                             |                                                                                                                                                      | /night) L <sub>A eq,T</sub> ; and/o                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                            |                                                                                                                               |                                                                                                                                                      | /night) L <sub>A eq,T</sub> , as a                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                              |         | • VIDra<br>s <sup>-1</sup> c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | or the vibra                                                                                                                               | which mation dose                                                                                                             | ay be expr<br>e value (VI                                                                                                                            | DV) in m s $^{-1.75}$ .                                                                                                                                                                                                           | ne peak particle velocity (ppv) in mm                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                              |         | noise affectir<br>a full descrip<br>exposure to<br>the equivaler<br>operation ave<br>continuous A<br>under investi<br>produced by<br>are averaged                                                                                                                                                                                                                                                                                                                                                                                                                                    | ng mixed r<br>tion. For v<br>vibration in<br>t continuc<br>eraged ov<br>weighted<br>gation and<br>the source<br>d over a tir<br>situations | esidentia<br>vibration,<br>building<br>bus A-we<br>er a repre<br>combina<br>d "specific<br>e under in<br>ne perioc<br>and imp | I and indus<br>the approp<br>is1 to 80 H<br>ighted nois<br>esentative<br>ation of all i<br>c noise" is<br>nvestigatio<br>d, T. BS41<br>oulsive or to | strial areas", and to<br>priate standard is E<br>z". In very general<br>the remaining when<br>time period, T. The<br>noise sources far a<br>the equivalent com<br>n as measured at a<br>42 gives advice on<br>onal noise should b | :1997 "Method for rating industrial<br>which reference should be made for<br>S6472:1992 "Evaluation of human<br>terms "background" is taken to be<br>the source under investigation is not<br>e "ambient" level is the equivalent<br>nd distant, including the source<br>inuous A-weighted noise level<br>a selected assessment point. Both<br>the appropriate reference periods.<br>e accounted for separately and not |  |  |
|                                              | 4.      | <ul><li>noise measu</li><li>the purport</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rements u<br>se/contex                                                                                                                     | ndertake<br>t of the s                                                                                                        | n relevant<br>urvey;                                                                                                                                 | to the environment                                                                                                                                                                                                                | <i>surveys,</i> modelling or any other al impact of the site, identifying:                                                                                                                                                                                                                                                                                                                                              |  |  |
|                                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                            |                                                                                                                               | ements we                                                                                                                                            |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                            | tigated o                                                                                                                     | r identified;                                                                                                                                        |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                              |         | <ul> <li>the outco</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mes.                                                                                                                                       |                                                                                                                               |                                                                                                                                                      |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                              | 5.      | identify any s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | specific loc                                                                                                                               | al issues                                                                                                                     | and propo                                                                                                                                            | osals for improvem                                                                                                                                                                                                                | ents.                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                              | 6.      | describe the any others w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                            |                                                                                                                               |                                                                                                                                                      |                                                                                                                                                                                                                                   | echniques below, any in Ref. 21 or                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                                              | 7.      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s, by justify                                                                                                                              | ing depa                                                                                                                      |                                                                                                                                                      |                                                                                                                                                                                                                                   | liance with the indicative<br>on 1.2 and in the Guide to Applicants)                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                              | In      | dicative BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AT Requ                                                                                                                                    | iremen                                                                                                                        | its                                                                                                                                                  |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| BAT for control<br>of noise and<br>vibration | 1.      | adequate ma<br>increases in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | aintenance<br>noise (e.g                                                                                                                   | of any p<br>mainter                                                                                                           | arts of plan<br>ance of be                                                                                                                           | nt or equipment wh<br>arings, air handling                                                                                                                                                                                        | or the control of noise, including<br>ose deterioration may give rise to<br>g plant, the building fabric as well as<br>quipment or machinery).                                                                                                                                                                                                                                                                          |  |  |
|                                              | 2.      | 2. In addition the operator should employ such other noise control techniques to ensure that the noise from the installation does not give rise to reasonable cause for annoyance, in the view of the Regulator and, in particular should justify where either Rating Levels (L <sub>Aeq,T</sub> ) from the installation exceed the numerical value of the Background Sound Level (L <sub>A90,T</sub> ), or the absolute levels of 50dB L <sub>Aeq</sub> by day or 45 by night are exceeded. Reasons why these levels may be exceeded in certain circumstances are given in Ref. 21. |                                                                                                                                            |                                                                                                                               |                                                                                                                                                      |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                              | 3.      | been identifie<br>the operator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ed in pre a<br>should err                                                                                                                  | pplication                                                                                                                    | n discussio<br>h noise co                                                                                                                            | ns or in previous d                                                                                                                                                                                                               | ay be an issue. Where this has iscussions with the Local Authority, are considered to be appropriate to riteria.                                                                                                                                                                                                                                                                                                        |  |  |
|                                              | 4.      | Plan. For mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ore inform                                                                                                                                 | ation see                                                                                                                     | Ref. 21. I                                                                                                                                           | Noise surveys, mea                                                                                                                                                                                                                | uld maintain a Noise Management<br>asurement, investigation or modelling<br>ending upon the potential for noise                                                                                                                                                                                                                                                                                                         |  |  |

| INTRODUC                             |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHNIQ                                                    | UES                                                | EN                                                     | <b>/ISSIO</b>                                               | IS                                                  | II                                                         | MPAC                              |                                     |  |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------|-----------------------------------|-------------------------------------|--|
| Mananement                           | aterials<br>nputs                                                                                                                                                                                                                                                                                               | Activities/<br>abatement                                                                                                                                                                                                                                                                                                                                                                                                             | Ground<br>water                                          | Waste                                              | Energy                                                 | Accidents                                                   | Noise                                               | Monitoring                                                 | Closure                           | Installation<br>issues              |  |
|                                      | -                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                          |                                                    |                                                        |                                                             |                                                     |                                                            |                                   |                                     |  |
|                                      | 5.                                                                                                                                                                                                                                                                                                              | Noise survey<br>existing insta                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          |                                                    |                                                        |                                                             |                                                     |                                                            | or either                         | new or                              |  |
| BAT for control                      | Nois                                                                                                                                                                                                                                                                                                            | e control tec                                                                                                                                                                                                                                                                                                                                                                                                                        | hniques:                                                 |                                                    |                                                        |                                                             |                                                     |                                                            |                                   |                                     |  |
| of noise and<br>vibration<br>(cont.) | 6.                                                                                                                                                                                                                                                                                                              | 6. The operator should describe the techniques taken, or proposed, to control noise from the activities including consideration of, but not limited to, those in the above references and those referred to below. The likely impact of these measures on the background levels in the locality and on the noise sensitive locations in particular should be given; with indication of the likely cost and implementation timescale. |                                                          |                                                    |                                                        |                                                             |                                                     |                                                            |                                   |                                     |  |
|                                      | 7.                                                                                                                                                                                                                                                                                                              | Siting and lo<br>silencing sho<br>reactive siler<br>more likely to<br>achieve parti<br>likely to caus                                                                                                                                                                                                                                                                                                                                | ould be use<br>ncing, e.g.<br>o have spe<br>icularly lov | ed. For fa<br>pipe reso<br>cific peal<br>v levels. | ans this is<br>onators, ma<br>k frequenc<br>The main o | ikely to be b<br>ay be more a<br>les. A comb<br>cross-media | road band<br>appropriat<br>ination of<br>issue is e | d absorptive<br>e for vacuun<br>techniques<br>nergy, but w | silencing<br>n pump n<br>may be n | whereas<br>oise which i<br>eeded to |  |
|                                      | 8.                                                                                                                                                                                                                                                                                                              | Primary cont<br>also conside<br>air and solid                                                                                                                                                                                                                                                                                                                                                                                        | rable nois                                               |                                                    |                                                        |                                                             |                                                     |                                                            |                                   |                                     |  |
|                                      | 9.                                                                                                                                                                                                                                                                                                              | All of these a<br>design. All s<br>design, minir                                                                                                                                                                                                                                                                                                                                                                                     | such plant                                               | should pr                                          | eferably be                                            | e indoors wit                                               | h particul                                          | ar attention f                                             | o acousti                         |                                     |  |
|                                      | Boil                                                                                                                                                                                                                                                                                                            | er plant                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                          |                                                    |                                                        |                                                             |                                                     |                                                            |                                   |                                     |  |
|                                      | 10.                                                                                                                                                                                                                                                                                                             | Safety relief<br>fitted. Howe<br>considered.<br>and stack att                                                                                                                                                                                                                                                                                                                                                                        | ver, other<br>Gas turbir                                 | sources                                            | of noise su                                            | ch as fans a                                                | nd waste                                            | or fuel feedi                                              | ng systen                         | ns should b                         |  |
|                                      | Inter                                                                                                                                                                                                                                                                                                           | rnal transpor                                                                                                                                                                                                                                                                                                                                                                                                                        | t                                                        |                                                    |                                                        |                                                             |                                                     |                                                            |                                   |                                     |  |
|                                      | 11.                                                                                                                                                                                                                                                                                                             | Within the cu<br>associated a<br>for reversing<br>or potential f                                                                                                                                                                                                                                                                                                                                                                     | ctivities. T<br>and prefe                                | The most<br>rably so i                             | important<br>it takes pla                              | consideratio<br>ce in an area                               | n is roadv                                          | vay layout to                                              | minimise                          | the need                            |  |
|                                      |                                                                                                                                                                                                                                                                                                                 | If problems p                                                                                                                                                                                                                                                                                                                                                                                                                        | ersist traf                                              | fic mover                                          | nent times                                             | will need to                                                | be limited                                          | l.                                                         |                                   |                                     |  |
|                                      |                                                                                                                                                                                                                                                                                                                 | Once off the                                                                                                                                                                                                                                                                                                                                                                                                                         | site, trans                                              | port is a                                          | planning is                                            | sue.                                                        |                                                     |                                                            |                                   |                                     |  |
|                                      | Gen                                                                                                                                                                                                                                                                                                             | eral                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                          |                                                    |                                                        |                                                             |                                                     |                                                            |                                   |                                     |  |
|                                      | 12.                                                                                                                                                                                                                                                                                                             | For new plar possible, ser                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |                                                    |                                                        |                                                             |                                                     |                                                            |                                   | edesign                             |  |
|                                      | Noise abatement can be expensive, especially where retrofitted. Studies have shown that for external attenuation there is a sharp increase in the cost per dB attenuated in this sector below 65 dB(A). See Ref. 21 for guidance on balancing costs and benefits in this area.                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                          |                                                    |                                                        |                                                             |                                                     |                                                            |                                   |                                     |  |
|                                      | For existing activities, the above techniques, where needed, should be operating within the timescale given in Section 1.1. However, it should be noted that, if there are local problems, the Regulator is likely to require it to be programmed early within the list of work to be carried out by that date. |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                          |                                                    |                                                        |                                                             |                                                     |                                                            |                                   |                                     |  |

| INTROD     | NTRODUCTION TECHNI |                          | CHNIQ           | UES   | ES EMISSIONS |           |       | IMPACT     |         |                        |
|------------|--------------------|--------------------------|-----------------|-------|--------------|-----------|-------|------------|---------|------------------------|
| Management | Materials inputs   | Activities/<br>abatement | Ground<br>water | Waste | Energy       | Accidents | Noise | Monitoring | Closure | Installation<br>issues |

## 2.10 Monitoring

This section describes monitoring and reporting requirements for emissions to all environmental media. Guidance is provided for the selection of the appropriate monitoring methodologies, frequency of monitoring, compliance assessment criteria and environmental monitoring.

Application Form Question 2.10 Describe the proposed measures for monitoring emissions including any environmental monitoring, and the frequency, measurement methodology and evaluation procedure proposed.

### With the Application the operator should:

- describe the current or proposed position with regard to the monitoring requirements below or any others which are pertinent to the installation for "Emissions monitoring", "Environmental monitoring", "Process monitoring" (where environmentally relevant) and "Monitoring standards" employed;
- 2. provide, in particular, the information described in requirement 15 below;
- 3. provide justifications for not using any of the monitoring requirements described;
- 4. Identify shortfalls in the above information which the operator believes require longer term studies to establish.

#### **Emissions monitoring**

The following monitoring parameters and frequency are normally appropriate in this sector. Generally, monitoring should be undertaken during commissioning, start-up, normal operation and shut-down unless the Regulator agrees that it would be inappropriate to do so.

Where effective surrogates are available they may be used to minimise monitoring costs.

Where monitoring shows that substances are not emitted in significant quantities, consideration can be given to a reduced monitoring frequency.

| Parameter        | Monitoring frequency                                                                                   |
|------------------|--------------------------------------------------------------------------------------------------------|
| Flow rate        | Continuous and integrated daily flow rate                                                              |
| рН               | Continuous                                                                                             |
| Temperature      | Continuous                                                                                             |
| COD/BOD          | Flow weighted sample or composite samples, weekly analysis, reported as flow weighted monthly averages |
| TOC              | Continuous                                                                                             |
| Turbidity        | Continuous                                                                                             |
| Dissolved oxygen | Continuous                                                                                             |

#### 1. Monitoring of process effluents released to watercourses include at least:

**NB** - other parameters specifically limited in the permit should be monitored. The appropriateness of the above frequencies will vary depending upon the sensitivity of the receiving water and should be proportionate to the scale of the operations.

| INTROD     | UCTIO | N TEC                    | CHNIQ | UES   | E      | MISSIO    | NS    | II         | MPAC    | Т                      |
|------------|-------|--------------------------|-------|-------|--------|-----------|-------|------------|---------|------------------------|
| Management |       | Activities/<br>abatement |       | Waste | Energy | Accidents | Noise | Monitoring | Closure | Installation<br>issues |

2. Monitoring of process effluents released to sewer should include at least:

| Parameter   | Monitoring frequency                                                                                         |
|-------------|--------------------------------------------------------------------------------------------------------------|
| Flow rate   | Continuous and integrated daily flow rate                                                                    |
| рН          | Continuous                                                                                                   |
| Temperature | Dependant on process. If process may generate an effluent > 25°C continuous monitoring would be appropriate. |
| COD/BOD     | Flow weighted sample or composite samples, weekly analysis, reported as flow weighted monthly averages       |
| TOC         | Dependant on process. See Monitoring of Process Variables.                                                   |

**NB** – In addition to monitoring an emission, these (and other parameters which may be specified in the permit) should be used to monitor for example product wasteage. The appropriateness of the above frequencies will vary depending upon the activity and should be proportionate to the scale of the operations.

- 3. In addition, the operator should have a fuller analysis carried out covering a broad spectrum of substances to establish that all relevant substances have been taken into account when setting the release limits. This should cover the substances listed in Schedule 5 of the Regulations unless it is agreed with the Regulator that they are not applicable. This should normally be done at least annually.
- 4. Any substances found to be of concern, or any other individual substances to which the local environment may be susceptible and upon which the operations may impact, should also be monitored more regularly. This would particularly apply to the common pesticides and heavy metals. Using composite samples is the technique most likely to be appropriate where the concentration does not vary excessively.
- 5. In some sectors there may be releases of substances which are more difficult to measure and whose capacity for harm is uncertain, particularly when in combination with other substances. "Whole effluent toxicity" monitoring techniques can therefore be appropriate to provide direct measurements of harm, e.g. direct toxicity assessment. Some guidance on toxicity testing is available (Ref. 22) and the Regulator will be providing further guidance in due course. Except in special circumstances toxicity testing should await that guidance.

#### Monitoring and reporting of emissions to air

6. The operator should identify the substances which will be released from each source, and quantify them, to enable the Agency to determine which, if any, will require regular monitoring. Although dependent upon the individual plant, the environmental significance of the released substances and the presence of sensitive receptors, monitoring is most likely to be needed for:

| Substance/sources                                                                                                                                      | Frequency             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Particulate from for example; the receiving and handling of raw materials, dry cleaning, mixing of powders, evaporators, dryers and grinding (milling) | Quarterly             |
| VOC from for example; peeling, extrusion, blanching, evaporators, dryers and solvent extraction                                                        | Quarterly             |
| Combustion emissions                                                                                                                                   | See separate Guidance |

See Section 3, Emission Benchmarks, for guidance on the appropriate levels.

- 7. Continuous monitoring would be expected where the releases are significant and where it is needed to maintain good control;
- 8. Gas flow should be measured, or otherwise determined, to relate concentrations to mass releases;

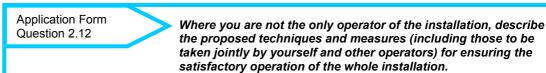
Emmisions monitoring (cont.)

| INTRODUC                           | TION <b>TECHNIQ</b>                                                                                                                                                                                         |                                                                                                                                                                                                                                               | UES                                                                                                                                                                                                                                                                             | EMISSIONS                                                                                                                                                                                            |                                                                                                                                                                           | NS                                                                                                                                                                             | IMPACT                                                                                                                                           |                                                                                                                                                 |                   |                                                                                                     |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------|
| Manadement                         |                                                                                                                                                                                                             | Activities/<br>abatement                                                                                                                                                                                                                      | Ground<br>water                                                                                                                                                                                                                                                                 | Waste                                                                                                                                                                                                | Energy                                                                                                                                                                    | Accidents                                                                                                                                                                      | Noise                                                                                                                                            | Monitoring                                                                                                                                      | Closure           | Installation<br>issues                                                                              |
|                                    | pulo                                                                                                                                                                                                        | abatement                                                                                                                                                                                                                                     | water                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                      |                                                                                                                                                                           |                                                                                                                                                                                |                                                                                                                                                  |                                                                                                                                                 |                   | 135003                                                                                              |
| Emissions<br>monitoring<br>(cont.) | r<br>•<br>•<br>10. V<br>•<br>r<br><b>Monit</b>                                                                                                                                                              | ecorded:<br>temperat<br>oxygen, v<br>water vap<br>other wei<br>exceed 3<br>removing<br>Where appro-<br>ensure that a<br>nist or fume<br>for waste er<br>ovolume a<br>disposal<br>the physi<br>its hazard<br>handling<br>where wa<br>a program | ure and pr<br>where the<br>pour conte<br>t gas strea<br>% v/v or w<br>the water<br>opriate, pe<br>all final rele<br>and free f<br>reporting of<br>missions the<br>missions the<br>and mass;<br>routes;<br>ical and che<br>d characte<br>precaution<br>aste is disp<br>mme of mo | essure;<br>emissions<br>nt, where<br>m. It wou<br>here the<br>riodic visu<br>eases to a<br>rom drop<br>of waste<br>the followin<br>emical co<br>ristics;<br>as and su<br>posed of co<br>ponitoring s | s are the<br>the emis<br>uld not be<br>measurir<br>ual and ol<br>air should<br>lets.<br><b>emission</b><br>ng should<br>ompositio<br>bstances<br>directly to<br>should be | result of a cosions are the<br>enceded when<br>ing technique<br>lfactory asse<br>be essentian<br><b>ns</b><br>I be monitore<br>n of the was<br>with which i<br>e land, for exa | ombustion<br>e result of<br>ere the wa<br>measures<br>essment of<br>illy colourie<br>ed and rec<br>te;<br>t cannot b<br>ample sluc<br>that takes | a combustion<br>ater vapour co<br>s the other pol<br>f releases sho<br>ess, free from<br>corded:<br>e mixed;<br>dge spreading<br>s into account | or an on the mate | or any<br>inable to<br><i>i</i> thout<br>ndertaken to<br>nt trailing<br>n-site landfill,<br>erials, |
|                                    |                                                                                                                                                                                                             | a programme of monitoring should be established that takes into account the materials,<br>potential contaminants and potential pathways from the land to groundwater surface water or<br>the food chain                                       |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                      |                                                                                                                                                                           |                                                                                                                                                                                |                                                                                                                                                  |                                                                                                                                                 |                   |                                                                                                     |
|                                    | the food chain.<br>Environmental monitoring (beyond the installation)                                                                                                                                       |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                      |                                                                                                                                                                           |                                                                                                                                                                                |                                                                                                                                                  |                                                                                                                                                 |                   |                                                                                                     |
| Environmental<br>monitoring        | <ol> <li>The operator should consider the need for environmental monitoring to assess the effects of<br/>emissions to controlled water, groundwater, air or land or emissions of noise or odour.</li> </ol> |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                      |                                                                                                                                                                           |                                                                                                                                                                                |                                                                                                                                                  |                                                                                                                                                 |                   |                                                                                                     |
|                                    | E<br>•<br>•                                                                                                                                                                                                 | <ul> <li>there are</li> <li>the emission</li> <li>may be a</li> <li>the operation</li> <li>the operation</li> <li>to validation</li> <li>for food a</li> </ul>                                                                                | e vulnerable<br>sions are a<br>at risk;<br>ator is look<br>tent;<br>te modellin<br>and drink ii                                                                                                                                                                                 | e recepto<br>a significa<br>ing for de<br>g work.<br>nstallatior                                                                                                                                     | rs;<br>nt contrib<br>partures<br>ns discha                                                                                                                                | from standa                                                                                                                                                                    | nvironmer<br>rds based                                                                                                                           | ntal Quality Sta<br>on lack of effe<br>ers environme                                                                                            | ect on the        | e                                                                                                   |
|                                    |                                                                                                                                                                                                             |                                                                                                                                                                                                                                               | mes are us                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      |                                                                                                                                                                           |                                                                                                                                                                                |                                                                                                                                                  |                                                                                                                                                 |                   |                                                                                                     |
|                                    | The n                                                                                                                                                                                                       | account s<br>gradient                                                                                                                                                                                                                         | ater, where<br>short and I<br>and down-                                                                                                                                                                                                                                         | e it should<br>ong-term<br>gradient                                                                                                                                                                  | d be desig<br>variation<br>of the site                                                                                                                                    | s in both. M<br>e;                                                                                                                                                             | onitoring v                                                                                                                                      | oth quality and<br>will need to tal                                                                                                             | ke place          | both up-                                                                                            |
|                                    | •                                                                                                                                                                                                           | upstream                                                                                                                                                                                                                                      | n and dowr                                                                                                                                                                                                                                                                      | nstream q                                                                                                                                                                                            |                                                                                                                                                                           | ill be needeo                                                                                                                                                                  |                                                                                                                                                  | ling, analysis                                                                                                                                  | and repo          | rting for                                                                                           |
|                                    | •                                                                                                                                                                                                           | assessm                                                                                                                                                                                                                                       | ding odour<br>tamination<br>ent of hea                                                                                                                                                                                                                                          | , including                                                                                                                                                                                          |                                                                                                                                                                           | ion, and agri                                                                                                                                                                  | cultural pr                                                                                                                                      | oducts;                                                                                                                                         |                   |                                                                                                     |
|                                    | Where environmental monitoring is needed the following should be considered:                                                                                                                                |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                      |                                                                                                                                                                           |                                                                                                                                                                                |                                                                                                                                                  |                                                                                                                                                 |                   |                                                                                                     |
|                                    | •                                                                                                                                                                                                           | monitorin                                                                                                                                                                                                                                     | ng strategy                                                                                                                                                                                                                                                                     | , selectio                                                                                                                                                                                           | n of moni                                                                                                                                                                 |                                                                                                                                                                                | , optimisa                                                                                                                                       | , sampling pro<br>tion of monitor<br>urces:                                                                                                     |                   | oach;                                                                                               |
|                                    |                                                                                                                                                                                                             |                                                                                                                                                                                                                                               | nty for the e                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                    |                                                                                                                                                                           | -                                                                                                                                                                              |                                                                                                                                                  | nt overall unco                                                                                                                                 | ertainty c        | ıf                                                                                                  |
|                                    | •                                                                                                                                                                                                           | quality as                                                                                                                                                                                                                                    | ssurance (                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      |                                                                                                                                                                           | ontrol (QC) p<br>ain of custod                                                                                                                                                 |                                                                                                                                                  | equipment cali<br>ail;                                                                                                                          | bration a         | nd<br>cont.                                                                                         |

| INTRODU               | JCTIC               | N TEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CHNIQ                     | UES                   | E                                  | MISSIO                                                       | NS         |                       | IMPAC                     | Т                      |
|-----------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------|------------------------------------|--------------------------------------------------------------|------------|-----------------------|---------------------------|------------------------|
| Management            | Materials<br>inputs | Activities/<br>abatement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ground<br>water           | Waste                 | Energy                             | Accidents                                                    | Noise      | Monitorin             | g Closure                 | Installation<br>issues |
|                       |                     | <ul> <li>reporting<br/>the provis</li> <li>Guidance on</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                            | procedure<br>sion of info | ormation<br>y monitor | for the Ag                         | jency.<br>gies and me                                        | thodolog   |                       | und in Tec                | format for             |
|                       | Envi                | Guidance Notes M8 and M9 (Ref. 22), for noise (Ref. 21) and odour (Ref. 24).<br>Environmental monitoring requirements which may be appropriate for this sector:                                                                                                                                                                                                                                                                                                                                                              |                           |                       |                                    |                                                              |            |                       |                           |                        |
|                       |                     | To water:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                       |                                    |                                                              |            |                       |                           |                        |
|                       |                     | <ul> <li>visual monitoring for foaming, colour and visible local effects on the ecology (typically daily);</li> <li>upstream and downstream watercourse sampling for nutrients, BOD, COD, specific contaminants or toxicity (regularly to establish conditions and then diminishing if effects constant and acceptable);</li> </ul>                                                                                                                                                                                          |                           |                       |                                    |                                                              |            |                       |                           | ic                     |
|                       |                     | <ul> <li>ecology surveys as required to establish the longer term effects on the aqueous environment.<br/>These are usually ongoing exercises structured to take account of both the sensitive receptors<br/>in the local environment and the changes which occur naturally in that environment in terms of<br/>growth, reproduction, etc. of populations of organisms as well the general health of the water<br/>course in terms of eutrophication, weed growth, sewage fungus formation, etc.</li> <li>To air:</li> </ul> |                           |                       |                                    |                                                              |            |                       |                           |                        |
|                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                       |                                    | V) boiler pla<br>nanagement                                  |            | ave sufficien<br>mes; | impact on                 | local air              |
|                       |                     | <ul> <li>daily visual monitoring to air for smoke, dust, litter, plumes and daily olfactory odour<br/>monitoring, with more extensive monitoring if nuisance is occurring or appears likely, see Ref.<br/>24.</li> </ul>                                                                                                                                                                                                                                                                                                     |                           |                       |                                    |                                                              |            |                       |                           |                        |
|                       |                     | <b>To land:</b><br>Monitoring surveys will need to be established where sludge is reused for agricultural benefit or ecological improvement or where sensitive soil systems or terrestrial ecosystems are at risk from indirect emission via the air.                                                                                                                                                                                                                                                                        |                           |                       |                                    |                                                              |            |                       |                           |                        |
|                       |                     | To groundwater:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                       |                                    |                                                              |            |                       |                           |                        |
|                       |                     | <ul> <li>Groundwater sampling may be needed where:</li> <li>there is uncertainty about drainage systems, especially on older sites;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                               |                           |                       |                                    |                                                              |            |                       |                           |                        |
|                       |                     | there are deliberate discharges to groundwater;                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                       |                                    |                                                              |            |                       |                           |                        |
|                       |                     | there are any other deposits to land.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |                       |                                    |                                                              |            |                       |                           |                        |
|                       |                     | <i>Noise:</i><br>See Section 2.9, and Reference 21 – Noise Regulation and Control.                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                       |                                    |                                                              |            |                       |                           |                        |
| Monitoring<br>process | Мо                  | Monitoring of process variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                       |                                    |                                                              |            |                       |                           |                        |
| variables             |                     | The following<br>this sector.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The opera                 |                       |                                    | that this is s                                               |            | fy any altern         |                           | gements.<br>J          |
|                       | Pro                 | oduct loss or v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | vasteage                  |                       | Monitorin on emiss                 | on 2.2.2.1<br>g of parame<br>ions to sewe<br>nese proces     | er can be  | n as TOC<br>used to   | activity spe              |                        |
|                       | inst                | esh water use<br>tallation<br>d at individual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                       | See sect                           | on 2.2.3                                                     |            |                       | normally co<br>and record |                        |
|                       | Ene<br>inst         | Energy consumption across the installation and at individual points of us normally continuous and recorded                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                       |                                    |                                                              |            |                       |                           |                        |
|                       |                     | frigerants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                       |                                    | of refrigeran<br>ed from the s<br>.3.8).                     |            |                       | each charg                | e or drain             |
|                       | Cle                 | aning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |                       | Monitorin<br>and chen<br>dilutions | g of use of c<br>nicals to che<br>and applicati<br>followed. | ck that co | orrect<br>edures      | normally co               | ontinuous              |
|                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                       | Manual                             |                                                              |            |                       | and record<br>weekly      |                        |
|                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                       |                                    |                                                              |            |                       |                           | Cont.                  |

| INTRODUC                         | CTION TECHNIQUES EMISSIONS IMPACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|                                  | terials Activities/ Ground Waste Energy Accidents Noise Monitoring Closure Installation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
| in                               | nputs abatement water water Linergy Accidents Noise monitoring closure issues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                                  | Monitoring standards (standard reference methods)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|                                  | Equipment standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
| Equipment<br>standards<br>MCERTS | <ul> <li>The Environment Agency has introduced its Monitoring Certification Scheme (MCERTS) to improve quality of monitoring data and to ensure that the instrumentation and methodologies employed for monitoring are fit for purpose. Performance standards have been published for continuous emissio monitoring systems (CEMs) and other MCERTS standards are under development to cover manual stack emissions monitoring, portable emissions monitoring equipment, ambient air quality monitors, water monitoring instrumentation, data acquisition and operators' own arrangements such as for installation, calibration and maintenance of monitoring.</li> <li>14. As far as possible, operators should ensure their monitoring arrangements comply with the requirements of MCERTS, where available, e.g. using certified instruments and equipment, ar using a registered stack testing organisation etc. Where the monitoring arrangements are not accordance with MCERTS requirements the operator should provide justification and describe monitoring provisions in detail. See Environment Agency Website (Ref 22) for listing of MCERF equipment</li> </ul> |  |  |  |  |  |  |  |  |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|                                  | 15. The following should be described in the application indicating which monitoring provisions comply with MCERTS requirements or for which other arrangements have been made:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|                                  | <ul> <li>monitoring methods and procedures (selection of Standard Reference Methods);</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
|                                  | <ul> <li>justification for continuous monitoring or spot sampling;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                                  | reference conditions and averaging periods;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
|                                  | <ul> <li>measurement uncertainty of the proposed methods and the resultant overall uncertainty;</li> <li>criteria for the assessment of non-compliance with permit limits and details of monitoring strategy aimed at demonstration of compliance reporting procedures and data storage of monitoring results, record keeping and reporting intervals for the provision of information to the Regulator;</li> <li>procedures for monitoring during start-up and shut-down and abnormal process conditions;</li> <li>drift correction calibration intervals and methods;</li> <li>the accreditation held by samplers and laboratories or details of the people used and the</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| Standards for                    | training/competencies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |
| sampling and                     | Sampling and analysis standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| analysis                         | 16. The analytical methods given in Appendix 1 should be used in this sector. In the event of other substances needing to be monitored, standards should be used in the following order of priority:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
| BREF:<br>Monitoring REF          | Comité Européen de Normalisation (CEN).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
| document in                      | British Standards Institution (BSI).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
| preparation.                     | <ul> <li>International Standardisation Organisation (ISO).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
|                                  | <ul> <li>United States Environmental Protection Agency (US EPA).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
|                                  | American Society for Testing and Materials (ASTM).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
|                                  | Deutches Institute für Normung (DIN).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
|                                  | Verein Deutcher Ingenieure (VDI).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |
|                                  | Association Française de Normalisation (AFNOR).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|                                  | Further guidance on standards, for monitoring gaseous releases, relevant to IPC/IPPC is given in the Technical Guidance Note 4 (Monitoring) (see Ref. 22). A series of updated Guidance Notes covering this subject is currently in preparation. This guidance specifies manual methods of sampling and analysis which will also be suitable for calibration of continuous emission monitoring instruments. Further guidance relevant to water and waste is available from the publications of the Standing Committee of Analysts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
|                                  | If in doubt the operator should consult the Agency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
|                                  | Monitoring timescales                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
|                                  | 17. The operator should complete any detailed studies required into monitoring needs (see item 4 at the beginning of this monitoring section) as an improvement condition to a timescale to be agreed with the Regulator but in any case within the timescale given in Section 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
|                                  | 18. For existing activities, the above techniques should be programmed for implementation within the same timescale.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |

|                            | torials Activitian/ Cround                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |  |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| Manadement                 | puts abatement water Waste Energy Accidents Noise Monitoring Closure issues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |
|                            | 2.11 De-commissioning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |  |
|                            | Application Form<br>Question 2.11 Describe the proposed measures, upon definitive cessation of<br>activities, to avoid any pollution risk and return the site of<br>operation to a satisfactory state (including, where appropriate,<br>measures relating to the design and construction of the<br>installation).                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |
|                            | With the Application the operator should:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |
|                            | 1. supply the site report;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |  |
|                            | describe the current or proposed position with regard to the techniques below or any others whic are pertinent to the installation;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |  |
|                            | for existing activities, identify shortfalls in the above information which the operator believes require longer term studies to establish.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |
|                            | ndicative BAT Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |  |
| BAT for<br>decommissioning | <ol> <li>The site report and operations during the IPPC permit         The IPPC application requires the preparation of a site report whose purpose, as described in         more detail in Refs. 3 and 4 and in <i>Preparation of a Site Report in a Permit Application (see Ref.</i>         27) is to provide a point of reference against which later determinations can be made of whether         there has been any deterioration of the site and information on the vulnerability of the site.     </li> </ol>                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |
|                            | Operations during the life of the IPPC permit should not lead to any deterioration of the site if the requirements of the other sections of this and the specific sector notes are adhered to. Should any instances arise which have, or might have, impacted on the state of the site the operator should record them along with any further investigation or ameliorating work carried out. This wi ensure that there is a coherent record of the state of the site throughout the period of the IPPC permit. This is as important for the protection of the operator as it is for the protection of the environment. Any changes to this record should be submitted to the Regulator. |  |  |  |  |  |  |  |  |  |  |
|                            | 2. Steps to be taken at the design and build stage of the activities<br>Care should be taken at the design stage to minimise risks during decommissioning. For existing<br>installations, where potential problems are identified, a programme of improvements should be<br>put in place to a timescale agreed with the Regulator. Designs should ensure that:                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |
|                            | <ul> <li>underground tanks and pipework are avoided where possible (unless protected by secondary<br/>containment or a suitable monitoring programme);</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |
|                            | <ul> <li>there is provision for the draining and clean-out of vessels and pipework prior to dismantling;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |  |
|                            | <ul> <li>lagoons and landfills are designed with a view to their eventual clean-up or surrender;</li> <li>insulation is provided which is readily dismantled without dust or hazard;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |
|                            | <ul> <li>materials used are recyclable (having regard for operational or other environmental objectives).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |  |
|                            | 3. The site closure plan<br>A site closure plan should be maintained to demonstrate that, in its current state, the installation<br>can be decommissioned to avoid any pollution risk and return the site of operation to a<br>satisfactory state. The plan should be kept updated as material changes occur. Common sense<br>should be used in the level of detail, since the circumstances at closure will affect the final plans.<br>However, even at an early stage, the closure plan should include:                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |
|                            | <ul> <li>either the removal or the flushing out of pipelines and vessels where appropriate and their<br/>complete emptying of any potentially harmful contents;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |  |
|                            | plans of all underground pipes and vessels;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |
|                            | <ul><li>the method and resource necessary for the clearing of lagoons;</li><li>the method of ensuring that any on-site landfills can meet the equivalent of surrender</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |
|                            | <ul> <li>conditions;</li> <li>the removal of asbestos or other potentially harmful materials unless agreed that it is reasonable to leave such liabilities to future owners;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |


103

| INTROD     | UCTIO               | N TE                                                                                                                                                                                                                                                                                                                                                                                                             | ECHNIQ                 | UES       | E         | MISSIC     | ONS      |                                          | IMPAC   | T                      |  |  |
|------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------|-----------|------------|----------|------------------------------------------|---------|------------------------|--|--|
| Management | Materials<br>Inputs | Main<br>Activities                                                                                                                                                                                                                                                                                                                                                                                               | Abatement<br>& control | Waste     | Energy    | Accidents  | Noise    | Monitoring                               | Closure | Installation<br>Issues |  |  |
|            |                     | <ul> <li>methods of dismantling buildings and other structures, see Ref. 26 which gives guidance on the protection of surface and groundwater at construction and demolition-sites;</li> <li>testing of the soil to ascertain the degree of any pollution caused by the activities and the need for any remediation to return the site to a satisfactory state as defined by the initial site report.</li> </ul> |                        |           |           |            |          |                                          |         |                        |  |  |
|            |                     | Note that radioactive sources are not covered by this legislation, but decommissioning plans should be<br>co-ordinated with responsibilities under the Radioactive Substances Act 1993.)                                                                                                                                                                                                                         |                        |           |           |            |          |                                          |         |                        |  |  |
|            | abov                | e), and sub                                                                                                                                                                                                                                                                                                                                                                                                      |                        | closure p | lan as ar | i improvem | ent cond | studies (see<br>ition to a time<br>n 1.1 |         |                        |  |  |

| INTROD     | INTRODUCTION TECHNIQUES |                    |                        |       |        | MISSIO    | NS    |            | IMPACT  |                        |  |
|------------|-------------------------|--------------------|------------------------|-------|--------|-----------|-------|------------|---------|------------------------|--|
| Management | Materials<br>Inputs     | Main<br>Activities | Abatement<br>& control | Waste | Energy | Accidents | Noise | Monitoring | Closure | Installation<br>Issues |  |

## 2.12 Installation-wide Issues

In some cases it is possible that actions which benefit the environmental performance of the overall installation will increase the emissions from one permit holder's activities. For example, taking treated effluent as a raw water supply will probably slightly increase emissions from that activity but could dramatically cut the total emissions from the whole installation.



#### With the Application the operator should:

- 1. where there are a number of separate Permits for the installation (particularly where there are different operators), **identify** any installation wide issues and opportunities for further interactions between the permit holders whereby the performance of the overall installation may be improved; and in particular
- 2. describe the current or proposed position with regard to the techniques below, or any others which are pertinent to the installation;

#### Indicative BAT Requirements

The possibilities will be both sector and site-specific, and include:

- 1. communication procedures between the various permit holders; in particular those needed to ensure that the risk of environmental incidents is minimised;
- 2. benefiting from the economies of scale to justify the installation of a CHP plant;
- 3. the combining of combustible wastes to justify a combined waste-to-energy/CHP plant;
- 4. the waste from one activity being a possible feedstock for another;
- 5. the treated effluent from one activity being of adequate quality to be the raw water feed for another activity;
- 6. the combining of effluent to justify a combined or upgraded effluent treatment plant;
- 7. the avoidance of accidents from one activity which may have a detrimental knock-on effect on the neighbouring activity;
- 8. land contamination from one activity affecting another or the possibility that one operator owns the land on which the other is situated.

For existing activities, The operator should implement any agreed techniques to a timescale agreed with the Regulator.

BAT across the whole installation

| INTROD     | UCTION |     | <b>FECH</b> | INIQUE    | S      | EMIS   | SIONS     |             | <b>IMPAC</b> | Г    |
|------------|--------|-----|-------------|-----------|--------|--------|-----------|-------------|--------------|------|
| Benchmark  |        | BOD | СОР         | Halogens  | Heavy  |        | Nutrients | Particulate | Sulphur      | VOCs |
| Comparison | Status | 000 | 000         | rialogeno | Metals | Oxides | Turionio  | 1 uniouluio | Dioxide      | 1000 |

## **3 EMISSION BENCHMARKS**

## 3.1 Emissions Inventory and Benchmark Comparison

Application Form Question 3.1 Describe the nature, quantities and sources of foreseeable emissions into each medium (which will result from the techniques proposed in Section 2).

#### With the Application the operator should:

1. provide a table of significant emissions of substances (except noise, vibration, odour or heat which are covered in their respective sections) that will result from the proposals in Section 2 and should include, preferably in order of significance:

- substance (where the substance is a mixture e.g. VOCs or COD, separate identification of the main constituents or inclusion of an improvement proposal to identify them);
- source, including height, location, efflux velocity and total gas or water flow;
- media to which it is released;
- any relevant EQS or other obligations;
- benchmark;
- proposed emissions normal/max expressed, as appropriate (see Section 3.2), for:
  - mass/unit time,
  - concentration (and total flow),
  - annual mass emissions,
- statistical basis (average, percentile etc.);
- notes covering the confidence in the ability to meet the benchmark values;
- if intermittent, the appropriate frequencies;
- plant loads at which the data is applicable;
- whether measured or calculated (the method of calculation should be provided).

The response should clearly state whether the emissions are current emission rates or those planned following improvements, and should cover emissions under both normal and abnormal conditions for:

- point source emissions to surface water, groundwater and sewer;
- waste emissions (refer to Sections 2.5 and 2.6 Waste Management);
- point source emissions to air;
- significant fugitive emissions to all media, identifying the proportion of each substance released which is due to fugitives rather than point source releases;
- abnormal emissions from emergency relief vents, flares etc.;

indirect and direct emission of carbon dioxide associated with energy consumed or generated. Emissions of carbon dioxide associated with energy use should be broken down by energy type and, in the case of electricity, by source e.g. public supply, direct supply or on site generation. Where energy is generated on site, or from a direct (non-public) supplier, the operator should specify and use the appropriate factor. Standard factors for carbon dioxide emissions are provided in the Energy Efficiency Guidance Note.

Where VOCs are released, the main chemical constituents of the emissions should be identified. The assessment of the impact of these chemicals in the environment will be carried out as in response to Section 4.1.

For waste, emissions relate to any wastes removed from the installation, or disposed of at the installation under the conditions of the Permit, e.g. landfill. Each waste should have its composition determined and the amounts expressed in terms of cubic metres or tonnes per month.

A suitable table on which to record this information is provided in the electronic version of this Guidance Note.

- 2. compare the emissions with the benchmark values given in the remainder of this Section;
- 3. where the benchmarks are not met, revisit the responses made in Section 2 as appropriate (see Section 1.2) and make proposals for improvements or justify not doing so.

| INTRODU                 | INTRODUCTION   TECHNIC |     | IQUES |          | EMISSIONS       |                    |           | IMPACT      |                    |      |
|-------------------------|------------------------|-----|-------|----------|-----------------|--------------------|-----------|-------------|--------------------|------|
| Benchmark<br>comparison | Benchmark<br>status    | BOD | COD   | Halogens | Heavy<br>metals | Nitrogen<br>oxides | Nutrients | Particulate | Sulphur<br>dioxide | VOCs |

| INTROD               | UCTION              | TECHNIQUES |     |          |                 | EMISSIONS          |           |             | IMPACT             |      |  |
|----------------------|---------------------|------------|-----|----------|-----------------|--------------------|-----------|-------------|--------------------|------|--|
| Benchmark comparison | Benchmark<br>status | BOD        | COD | Halogens | Heavy<br>metals | Nitrogen<br>oxides | Nutrients | Particulate | Sulphur<br>dioxide | VOCs |  |

## 3.2 The Emission Benchmarks

Introduction to emission benchmarks Guidance is given below on release concentrations or mass release rates achievable for key substances using the best combination of techniques. They are not mandatory release limits and reference should be made to Section 1 and the Guide for Applicants regarding their use.

The lower figure in the quoted ranges would normally be expected from a new installation. Existing installations should operate to the lowest practicable figure within the range taking into account the BAT criteria, in particular, release limits for water set in the permit will take into account the effect on the receiving water. For example, limits on Total P for a discharge to seawater may not be appropriate since nitrogen, not phosphorus is the more significant nutrient in marine waters.

#### 3.2.1 Standards and obligations

In addition to meeting the requirements of BAT, there are other national and international standards and obligations which must either be safeguarded through the IPPC permit or, at least, taken into account in setting permit conditions. This is particularly the case for any EC based EQSs. The most likely of these to be relevant in this sector are referred to under the appropriate substance. The extracts from standards are, however, quoted for ease of reference; the relevant and most up to date standards should be consulted for the definitive requirements.

## 3.2.2 EC based EQ Standards

*IPPC: A Practical Guide* (see Ref. 1) explains how these should be taken into account and contains an annex listing the relevant standards. (See Appendix 2 for equivalent legislation in Scotland and Northern Ireland). They can be summarised as:

#### Air Quality

- Statutory Instrument 1989 No 317, Clean Air, The Air Quality Standards Regulations 1989
- Statutory Instrument 1997 No 3043, Environmental Protection, The Air Quality Regulations 1997

#### Water Quality

- Directive 76/464/EEC on pollution Caused by Dangerous Substances Discharged to Water, contains two lists of substances. List 1 relates to the most dangerous and standards are set out in various Daughter Directives. List 2 substances must also be controlled. Annual mean concentration limits for receiving waters for List 1 substances can be found in SI 1989/2286 and SI 1992/337 the Surface Water (Dangerous Substances Classification) Regulations. Values for List 2 substances are contained in SI 1997/2560 and SI 1998/389. Daughter Directives cover EQS values for mercury, cadmium, hexachlorocyclohexane, DDT, carbon tetrachloride, pentachlorophenol, aldrin, dieldrin, endrin, isodrin, hexachlorobenzene, hexachlorobutadiene, chloroform, 1,2-dichloroethane, trichloroethane, perchloroethane and trichlorobenzene.
- Other waters with specific uses have water quality concentration limits for certain substances. These are covered by the following Regulations:
  - SI 1991/1597 Bathing Waters (Classification) Regulations
  - SI 1992/1331 and Direction 1997 Surface Waters (Fishlife) (Classification) Regulations
  - SI 1997/1332 Surface Waters (Shellfish) (Classification) Regulations
  - SI 1996/3001 The Surface Waters (Abstraction and Drinking Water) (Classification) Regulations

#### Future likely changes include:

- Some air and water quality standards are likely to be replaced by new standards in the near future.
- The (Draft) Solvents Directive on the limitation of emissions of VOCs due to the use of organic solvents in certain activities and installations.

#### Other standards and obligations

- Hazardous Waste Incineration Directive;
- Waste Incineration Directive (Draft)
- Large Combustion Plant Directive
- Reducing Emissions of VOCs and Levels of Ground Level Ozone: a UK Strategy
- Water Quality Objectives assigned water quality objectives to inland rivers and water courses (ref. Surface (Rivers Ecosystem) Classification
- The UNECE convention on long-range transboundary air pollution
- The Montreal Protocol
- The Habitats Directive (see Section 4.3)

| INTROD     | UCTION | TECHNIQUES |     |          |        | EMISSI   | ONS       | IMPACT      |         |      |
|------------|--------|------------|-----|----------|--------|----------|-----------|-------------|---------|------|
| Benchmark  |        | BOD        | COD | Halogens | Heavy  | Nitrogen | Nutrients | Particulate | Sulphur | VOCs |
| comparison | status |            |     |          | metals | oxides   |           |             | dioxide |      |

#### 3.2.3 Units for benchmarks and setting limits in permits

Releases can be expressed in terms of:

- "concentration" (e.g. mg/l or mg/m<sup>3</sup>) which is a useful day-to-day measure of the effectiveness of any abatement plant and is usually measurable and enforceable The total flow must be measured/controlled as well;
- "specific mass release" (e.g. kg/ t<sub>product</sub> or input or other appropriate parameter) which is a
  measure of the overall environmental performance of the plant (including the abatement plant)
  compared with similar plants elsewhere;
- "absolute mass release" (e.g. kg/hr, t/yr) which relates directly to environmental impact.

When endeavouring to reduce the environmental impact of an installation, its performance against each of these levels should be considered, as appropriate to the circumstances, in assessing where improvements can best be made.

When setting limits in permits the most appropriate measure will depend on the purpose of the limit. It may also be appropriate to use surrogate parameters which reflect optimum environmental performance of plant as the routine measurement, supported by less frequent check-analyses on the final concentration. Examples of surrogate measures would be the continuous measurement of conductivity (after ion-exchange treatment) or total carbon (before a guard-column in activated carbon treatment) to indicate when regeneration or replacement is required.

#### 3.2.4 Statistical basis for benchmarks and limits in permits

Conditions in permits can be set with percentile, mean or median values over yearly, monthly or daily periods, which reflect probable variation in performance. In addition absolute maxima can be set.

Where there are known failure modes, which will occur even when applying BAT, limits in permits may be specifically disapplied but with commensurate requirements to notify the Agency and to take specific remedial action.

*For Water*: UK benchmarks or limits are most frequently 95 percentile concentrations or absolute concentrations, (with flow limited on a daily average or maximum basis). BREF figures are generally yearly averages.

*For Air* benchmarks or limits are most frequently expressed as daily averages or, typically 95% of hourly averages. BREF figures are generally yearly averages.

#### 3.2.5 Reference conditions for releases to air

The reference conditions of substances in releases to air from point sources are: temperature 273 K (0 °C), pressure 101.3 kPa (1 atmosphere), no correction for water vapour or oxygen.

The reference conditions for combustion or incineration processes are as given in the appropriate guidance note.

These reference conditions relate to the benchmark release levels given in this Note and care should always be taken to convert benchmark and proposed releases to the same reference conditions for comparison. The permit may employ different reference conditions if they are more suitable for the process in question.

To convert measured values to reference conditions see Technical Guidance Note M2 (Ref. 22) for more information.

| INTROD               | T                   | TECHNIQUES |     |          | EMISSI          | ONS                | IMPACT    |             |                    |      |
|----------------------|---------------------|------------|-----|----------|-----------------|--------------------|-----------|-------------|--------------------|------|
| Benchmark comparison | Benchmark<br>status | BOD        | COD | Halogens | Heavy<br>metals | Nitrogen<br>oxides | Nutrients | Particulate | Sulphur<br>dioxide | VOCs |

## 3.3 BOD

Relevant for emissions to water including sewer

#### **Other Applicable Standards and Obligations**

(Extracts from standards are quoted for ease of reference. The relevant standards should be consulted for the definitive requirements)

| UK Water Quality Objectives            | BOD (ATU)<br>mg/l 90%ile | Dissolved O <sub>2</sub><br>% saturation 10%ile |
|----------------------------------------|--------------------------|-------------------------------------------------|
| Class 1                                | 2.5                      | 80                                              |
| Class 2                                | 4.0                      | 70                                              |
| Class 3                                | 6.0                      | 60                                              |
| Class 4                                | 8.0                      | 40                                              |
| Class 5                                | 15                       | 20                                              |
| Designated freshwaters<br>SI 1997/1331 |                          | Dissolved O <sub>2</sub><br>mg/l *              |
| Salmonid imperative:                   | -                        | 50%>9                                           |
| guideline:                             | 3                        | 50%>9 100%>7                                    |
| Cyprinid imperative:                   | -                        | 50%>7                                           |
| guideline:                             | 6                        | 50%>9 100%>5                                    |

\* 50% median and 100% minimum standard

#### **Benchmark Emission Values**

The BOD benchmarks are obviously important where a treated effluent is being discharged to a watercourse. It is also an important measure where the effluent is to be treated off-site (see section 2.3.14) where the operator has to assess the off-site treatment against what could be carried out on site under BAT criteria.

On-site biological treatment plant can be designed to deliver a concentration of 10-20 mg/l (flow weighted monthly average), for any incoming load. The mass release will therefore be determined by the water flow. Minimisation of water usage would therefore be important. Lower values can be achieved by filtration as secondary or tertiary treatment.

For new plant discharging to controlled water, 10-20 mg/l represents BAT in the general case. Existing plant should be uprated to meet at least the larger values in the ranges for the appropriate plant in the above table.

In specific cases it may be possible to demonstrate that BAT does not require these levels. Such a case should be based upon:

- understanding of the chemical composition of the discharge, in particular the lack of persistent, bioaccumulative, or toxic elements which could have been removed by further treatment;
- a knowledge of the local environment and an assessment of the likely impact thereon;
- an appropriate environmental monitoring programme to demonstrate there is no significant impact.

## 3.4 COD

#### **Other Applicable Standards and Obligations**

None

#### **Benchmark Emission Values**

#### Not available

Emission limit values would normally only be set if the impact of the COD was understood and there is a clear reason for setting the limit such as to drive a reduction to an agreed plan, as a toxicity surrogate or where there are agreed actions which can be employed to control it. Thus it is more important that there is:

- an understanding of the chemical composition of the discharge, in particular the lack of persistent, bioaccumulative, or toxic elements which could have been removed by further treatment;
- a knowledge of the local environment and an assessment of the likely impact thereon;
- an appropriate environmental monitoring programme to demonstrate that there is no significant impact.

## 3.5 Halogens

#### **Other Applicable Standards and Obligations**

(Extracts from standards are quoted for ease of reference. The relevant standards should be consulted for the definitive requirements)

|                                        | Total residual chlorine<br>(as mg/l HOCI) |
|----------------------------------------|-------------------------------------------|
| Designated freshwaters<br>SI 1997/1331 |                                           |
| Salmonid imperative:                   | 0.005                                     |
| guideline:                             | -                                         |
| Cyprinid imperative:                   | 0.005                                     |
| guideline:                             | -                                         |
| Dangerous Substances List 1            |                                           |
| (Fresh or tidal)                       |                                           |

#### **Benchmark Emission Values**

| Media  | Substance     | Activity                     | Benchmark value          | Basis for the<br>Benchmark |
|--------|---------------|------------------------------|--------------------------|----------------------------|
| To air | HCI and<br>HF | Combustion /<br>incineration | See appropriate guidance |                            |

| INTR               | INTRODUCTION TECHNIQUES |                     |     |     | S        | EMISS           | SIONS              |           | MPAC <sup>-</sup> | Г                  |      |
|--------------------|-------------------------|---------------------|-----|-----|----------|-----------------|--------------------|-----------|-------------------|--------------------|------|
| Benchm<br>Comparis |                         | Benchmark<br>Status | BOD | COD | Halogens | Heavy<br>Metals | Nitrogen<br>Oxides | Nutrients | Particulate       | Sulphur<br>Dioxide | VOCs |

## 3.6 Heavy Metals

#### **Other Applicable Standards and Obligations**

(Extracts from standards are quoted for ease of reference. The relevant standards should be consulted for the definitive requirements)

|                                                | Zine and Conner                                       | Mercury           | Cadmium        |
|------------------------------------------------|-------------------------------------------------------|-------------------|----------------|
|                                                | Zinc and Copper                                       | µg (as metal)/l   | annual average |
| Designated freshwaters<br>SI 1997/1331         | Depends on water<br>hardness – see<br>Regulations and |                   |                |
| UK water quality objectives                    | Note 1                                                |                   |                |
| Dangerous Substances emission<br>limits List 1 |                                                       |                   |                |
| Fresh:                                         |                                                       | 1.0               | 5              |
| Coastal:                                       |                                                       | 0.3               | 2.5            |
| Dangerous Substances emission<br>limits List 2 | Most                                                  | metals – see Note | 1              |
| (Fresh or tidal)                               |                                                       |                   |                |

**Note 1**: unless these metals are known to be used – from assessment of raw materials inventory or from a one-off analysis (see Section 2.10), further monitoring or emission limit values are not normally required.

#### **Benchmark Emission Values**

Where sources of mercury or cadmium cannot be eliminated or reduced to the above by control at source, abatement will be required to control releases to water. In biological treatment 75 - 95% of these metals will transfer to the sludge. Levels are unlikely to cause problems for the disposal of sludge but care will need to be taken to ensure that levels in the receiving water are acceptable. The figures below are achievable, if necessary, to meet water quality standards.

| Media    | Substance | Activity                    | Achievable levels<br>if required | Basis for the<br>Benchmark |
|----------|-----------|-----------------------------|----------------------------------|----------------------------|
| To water | Mercury   | Transferred from<br>caustic | 0.1 µg/l                         | Parity with other sectors  |
| To Air   | Heavy     | Combustion                  | See appropriate                  |                            |
|          | metals    | /incineration               | guidance                         |                            |

## 3.7 Nitrogen Oxides

#### **Other Applicable Standards and Obligations**

(Extracts from standards are quoted for ease of reference. The relevant standards should be consulted for the definitive requirements)

Statutory Instrument 1989 No 317, Clean Air, The Air Quality Standards Regulations 1989 gives limit values in air for nitrogen dioxide.

**Statutory Instrument 1997 No 3043**, *Environmental Protection, The Air Quality Regulations 1997* gives air quality objectives to be achieved by 2005 for nitrogen dioxide

**The UNECE convention on long-range transboundary air pollution** Negotiations are now underway which could lead to a requirement further to reduce emissions of NOx.

Waste Incineration Directive (Draft) requires a NOx level of 200 mg/m<sup>3</sup>.

#### **Benchmark Emission Values**

| Media | Activity | Benchm       | ark value     | Basis for the Benchmark  |
|-------|----------|--------------|---------------|--------------------------|
| Meula | Activity | Mass release | Concentration | Basis for the Benchinark |

| INTRODUCTION TECHNIQUES  |                     |     |     | S        | EMISSIONS       |                    |           | IMPACT      |                    |      |
|--------------------------|---------------------|-----|-----|----------|-----------------|--------------------|-----------|-------------|--------------------|------|
| Benchmark<br>Comparisons | Benchmark<br>Status | BOD | COD | Halogens | Heavy<br>Metals | Nitrogen<br>Oxides | Nutrients | Particulate | Sulphur<br>Dioxide | VOCs |

| To air | from<br>combustion<br>plant | See appropriate<br>guidance note | Will require the use of good combustion chamber design and low NOx burners. |
|--------|-----------------------------|----------------------------------|-----------------------------------------------------------------------------|
|--------|-----------------------------|----------------------------------|-----------------------------------------------------------------------------|

## 3.8 Nutrients (Phosphates and Nitrates)

#### **Other Applicable Standards and Obligations**

(Extracts from standards are quoted for ease of reference. The relevant standards should be consulted for the definitive requirements).

| UK Water Quality<br>Objectives |                       | Nitrite<br>mg/l N | Ammonia total<br>mg/l N 90%ile | Non ionised Ammonia<br>(total) mg/l N 95%ile |
|--------------------------------|-----------------------|-------------------|--------------------------------|----------------------------------------------|
| Class 1                        |                       |                   | 0.25                           | 0.021                                        |
| Class 2                        |                       |                   | 0.6                            | 0.021                                        |
| Class 3                        |                       |                   | 1.3                            | 0.021                                        |
| Class 4                        |                       |                   | 2.5                            | -                                            |
| Class 5                        |                       |                   | 9.0                            | -                                            |
| Designate<br>SI 1997/13        | ed freshwaters<br>331 |                   |                                |                                              |
| Salmonid                       | imperative:           | -                 | 0.780                          | 0.021                                        |
|                                | guideline:            | 0.150             | 0.030                          | 0.004                                        |
| Cyprinid                       | imperative:           | -                 | 0.780                          | 0.021                                        |
|                                | guideline:            | 0.460             | 0.160                          | 0.004                                        |

#### **Benchmark Emission Values**

Nitrogen and phosphorus in the raw wastewater, will arise from debris removed in the cleaning processes and cleaning agents may also give rise to these substances. The benchmarks are obviously important where a treated effluent is being discharged to a watercourse, where account must be taken of nitrate or phosphate vulnerability of the receiving environment.

It is also an important measure where the effluent is to be treated off-site (see Section Error! Reference source not found.) where the operator has to assess the off-site treatment against what could be carried out on site under BAT criteria.

| INTROD     | UCTION    | TECHNIQUES |     |          | 3      | EMISS    | l         | IMPACT      |         |      |
|------------|-----------|------------|-----|----------|--------|----------|-----------|-------------|---------|------|
| Benchmark  | Benchmark | BOD        | COD | Halogens | Heavy  | Nitrogen | Nutriente | Particulate | Sulphur | VOCs |
| comparison | status    | DOD        | COD | Talogens | metals | oxides   | Nutrients | FaillCulate | dioxide | V003 |

## 3.9 Particulate and Suspended Solids

The term particulate for releases to air includes all particle sizes from submicron combustion fume to coarse dust from storage yards. Suspended solids refers to releases to water.

#### **Other Applicable Standards and Obligations**

(Extracts from standards are quoted for ease of reference. The relevant standards should be consulted for the definitive requirements)

Water:

| Designated freshwaters<br>SI 1997/1331 | Suspended solids annual average mg/l |
|----------------------------------------|--------------------------------------|
| Salmonid or cyprinid guideline:        | 25                                   |

*Air:* Statutory Instrument 1989 No 317, *Clean Air, The Air Quality Standards Regulations* 1989 gives limit values in air for suspended particulates.

**Statutory Instrument 1997 No 3043**, *Environmental Protection, The Air Quality Regulations 1997* gives air quality objectives to be achieved by 2005 for PM<sub>10</sub>

#### **Benchmark Emission Values**

Not available

BAT requires that emissions are prevented or reduced where an assessment of the costs and benefits shows such action to be reasonable, however, the nature of the receiving water will influence the assessment of the benefits. However, particulate matter is a carrier for many other pollutants that adhere to it (whichever media it is released to) and this must also be taken into account. Reductions are more likely to be driven by the need to reduce BOD/COD

| Activity                                                                                                                     | Benchmark value                                                                      | Basis for the Benchmark                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Fugitive from equipment, plant<br>buildings, storage yards and<br>materials handling (2.3.13)<br>Point release from enclosed | "no visible dust" criteria<br>may normally be<br>appropriate<br>50 mg/m <sup>3</sup> | Parity with other UK industrial sector<br>benchmarks for fugitive or low level,<br>relatively benign, nuisance dusts. |
| systems (2.3.13)                                                                                                             |                                                                                      |                                                                                                                       |
| Point release from combustion<br>plant/incineration                                                                          | See appropriate guidance note                                                        | See appropriate guidance note<br>Based on parity with other sectors                                                   |

| INTROE                   | DUCTION TECHNIQUES |     | S   | EMISSIONS |                 | IMPACT             |           | Г           |                    |      |
|--------------------------|--------------------|-----|-----|-----------|-----------------|--------------------|-----------|-------------|--------------------|------|
| Benchmark<br>Comparisons |                    | BOD | COD | Halogens  | Heavy<br>Metals | Nitrogen<br>Oxides | Nutrients | Particulate | Sulphur<br>Dioxide | VOCs |

## 3.10 Sulphur Dioxide

#### Other Applicable Standards and Obligations

(Extracts from standards are quoted for ease of reference. The relevant standards should be consulted for the definitive requirements)

Statutory Instrument 1989 No 317, Clean Air, The Air Quality Standards Regulations 1989 gives limit values in air for sulphur dioxide.

**Statutory Instrument 1997 No 3043**, *Environmental Protection, The Air Quality Regulations 1997* gives air quality objectives to be achieved by 2005 for sulphur dioxide

**The UNECE convention on long-range transboundary air pollution.** Under this Convention, a requirement further to reduce SO<sub>2</sub> emissions *from all sources* has been agreed. The second Sulphur Protocol (Oslo, 1994) obliges the UK to reduce SO<sub>2</sub> emissions by 80% (based on 1980 levels) by 2010.

#### **Benchmark Emission Values**

| Madia  | A set in site s             | Benchm       | nark value                    | Regio for the Reveluents                                           |
|--------|-----------------------------|--------------|-------------------------------|--------------------------------------------------------------------|
| Media  | Activity                    | Mass release | Concentration                 | Basis for the Benchmark                                            |
| To air | from<br>combustion<br>plant |              | See appropriate guidance note | Would include low sulphur fuels<br>or control of sulphur emissions |

## 3.11 VOCs

The term "volatile organic compounds" includes all organic compounds released to air in the gas phase.

#### Other Applicable Standards and Obligations

(Extracts from standards are quoted for ease of reference. The relevant standards should be consulted for the definitive requirements)

The "Solvents Directive" - The EC Directive on the limitation of emissions of VOCs due to the use of organic solvents in certain activities and installations is likely to be adopted soon.

#### "Reducing Emissions of VOCs and Levels of Ground Level Ozone: A UK Strategy" was

published by the Department of the Environment in October 1993. It sets out how the Government expects to meet its obligations under the UNECE VOCs Protocol to reduce its emissions by 30% (based on 1988 levels) by 1999, including the reductions projected for the major industrial sectors. Food and Drink included in the "other miscellaneous industries" sector with no specific reduction targets stated.

The UNECE convention on long-range transboundary air pollution Negotiations are now under way which could lead to a requirement further to reduce emissions of VOCs.

#### **Benchmark Emission Values**

For emissions to water see BOD/COD,

| Emission            | Activity        | Threshold            | Benchmark<br>value              | Basis for the<br>Benchmark                              |
|---------------------|-----------------|----------------------|---------------------------------|---------------------------------------------------------|
| Solvents (various). | extraction      | emission<br>> 5 t/yr | 80 mg/m <sup>3</sup> as toluene | Parity with other UK<br>industrial sector<br>benchmarks |
| VOCs and dioxins    | Other combustic | on /incineration     | See appropriate guidance        |                                                         |

| INTRODUCTION      | TEC | HNIQUES                         | EMISSIO | NS | IMPACT             |
|-------------------|-----|---------------------------------|---------|----|--------------------|
| Impact Assessment |     | Waste Management Licensing Regs |         |    | Habitats Directive |

## 4 IMPACT

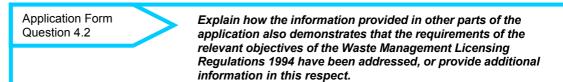
## 4.1 Assessment of the Impact of Emissions on the Environment

Application Form Question 4.1

Provide an assessment of the potential significant environmental effects (including transboundary effects) of the foreseeable emissions.

#### With the Application the operator should:

- 1. Provide a description, including maps as appropriate, of the receiving environment to identify the receptors of pollution. The extent of the area may cover the local, national and international (e.g. transboundary effects) environment as appropriate.
- 2. Identify important receptors which may include: areas of human population including noise or odour-sensitive areas, flora and fauna (i.e. Habitat Directive sites, special areas of conservation, Sites of Special Scientific Interest (SSSI) or other sensitive areas), soil, water, i.e. groundwater (water below the surface of the ground in the saturation zone and in direct contact with the ground and subsoil) and watercourses (e.g. ditches, streams, brooks, rivers), air including the upper atmosphere, landscape, material assets and the cultural heritage.
- 3. Identify the pathways by which the receptors will be exposed (where not self evident).
- 4. Carry out an assessment of the potential impact of the total emissions from the activities on these receptors. Ref. 5 provides a systematic method for doing this and will also identify where modelling needs to be carried out, to air or water, to improve the understanding of the dispersion of the emissions. The assessment will include comparison (see IPPC A Practical Guide (Ref. 3) and Section 3.2) with:
  - community EQS levels;
  - other statutory obligations;
  - non-statutory obligations;
  - environmental action levels (EALs) and the other environmental and regulatory parameters defined in Ref. 5.


In particular it will be necessary to demonstrate that an appropriate assessment of vent and chimney heights has been made to ensure that there is adequate dispersion of the minimised emission(s) to avoid exceeding local ground-level pollution thresholds and limit national and transboundary pollution impacts, based on the most sensitive receptor, be it human health, soil or terrestrial ecosystems.

Where appropriate the operator should also recognise the chimney or vent as an emergency emission point and understand the likely behaviour. Process upsets or equipment failure giving rise to abnormally high emission levels over short periods should be assessed. Even if the applicant can demonstrate a very low probability of occurrence, the height of the chimney or vent should nevertheless be set to avoid any significant risk to health. The impact of fugitive emissions can also be assessed in many cases.

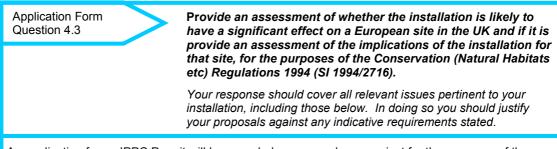
Consider whether the responses to Sections 2 and 3 and this assessment adequately demonstrate that the necessary measures have been taken against pollution, in particular by the application of BAT, and that no significant pollution will be caused. Where there is uncertainty about this, the measures in Section 2 should be revisited as appropriate to make further improvements.

5. Where the same pollutants are being emitted by more than one permitted activity on the installation the operator should assess the impact both with and without the neighbouring emissions.

## 4.2 The Waste Management Licensing Regulations



In relation to activities involving the disposal or recovery of waste, the Agencies are required to exercise their functions for the purpose of achieving the relevant objectives set out in Schedule 4 of the Waste Management Licensing Regulations 1994. (For the equivalent Regulations in Scotland and Northern Ireland, see Appendix 2).


The relevant objectives, contained in paragraph 4, Schedule 4 of the Waste Management Licensing Regulations 1994 (*SI 1994/1056 as amended*) are extensive, but will only require attention for activities which involve the recovery or disposal of waste. Paragraph 4(1) is as follows:

- a) "ensuring the waste is recovered or disposed of without endangering human health and without using process or methods which could harm the environment and in particular without:
  - i risk to water, air, soil, plants or animals; or
  - ii causing nuisance through noise or odours; or
  - iii adversely affecting the countryside or places of special interest.
- b) Implementing, as far as material, any plan made under the plan-making provisions."

The application of BAT is likely already to address risks to water, air, soil, plants or animals, odour nuisance and some aspects of effects on the countryside. It will, however, be necessary for you briefly to consider each of these objectives individually and provide a comment on how they are being addressed by your proposals. It is also necessary to ensure that any places of special concern, such as sites of special scientific interest (SSSIs) which could be affected, are identified and commented upon, although, again, these may have been addressed in your assessment for BAT, in which case a cross-reference may suffice.

Operators should identify any development plans made by the local planning authority including any waste local plan, and comment on the extent to which the proposals accord with the contents of any such plan (see Section 2.6).

## 4.3 The Habitats Regulations



An application for an IPPC Permit will be regarded as a new plan or project for the purposes of the Habitats Regulations (For the equivalent Regulations in Scotland and Northern Ireland see Appendix 2). Therefore, operators should provide an initial assessment of whether the installation is likely to have a significant effect on any European site in the UK (either alone or in combination with other relevant plans or projects), and if so, an initial assessment of the implications of the installation for any such site. The application of BAT is likely to have gone some way towards addressing the potential impact of the installation on European sites and putting into place techniques to avoid any significant effects. The operator should provide a description of how the BAT assessment has specifically taken these matters into account, bearing in mind the conservation objectives of any such site.

European sites are defined in Regulation 10 of the Habitats Regulations to include Special Areas of Conservation (SACs); sites of community importance (sites that have been selected as candidate SAC by member states and adopted by the European Commission but which are not yet formally classified; and Special Protection Areas (SPAs). It is also Government policy (set out in PPG 9 on nature conservation) that potential SPAs and candidate SACs should also be considered to be European sites for the purposes of Regulation 10.

Information on the location of European Sites and their conservation objectives is available from
 English Nature (01733 455000), http://www.english-nature.org.uk

- Countryside Council for Wales (01248 385620), http://www.ccw.gov.uk
- Scottish Natural Heritage (0131 447 4784) http://www.snh.org.uk
- Joint Nature Conservation Committee (01733 866852), http://www.jncc.gov.uk

The Agency will need to consider the operator's initial assessment and if it concludes that the installation is likely to have a significant effect on a European site, then the Agency will need to carry out an "appropriate assessment" of the implications of the installation in view of that site's conservation objectives. Because the Regulations impose a duty on the Agency to carry out these assessments, it cannot rely on the operator's initial assessments, and therefore the Agency must be provided with any relevant information upon which the operator's assessment is based.

Note that in many cases, the impact of the Habitats Regulations will have been considered at the planning application stage, in which case the Agency should be advised of the details.

## REFERENCES

For a full list of available technical Guidance see Appendix A of the *Guide to Applicants* or visit the Environment Agency Website http://www.environment-agency.gov.uk. Many of the references below are being made available free of charge for viewing or download on the Website. The same information can also be accessed via the SEPA web site http://www.sepa.org, or the NIEHS web site www.nics.gov.uk/ehs. Most titles will also be available in hard copy from The Stationery Office (TSO). Some existing titles are not yet available on the Website but can be obtained from TSO.

- 1. The Pollution Prevention and Control Act (1999) (www.uk-legislation.hmso.gov.uk).
- 2. The Pollution Prevention and Control Regulations (SI 1973 2000) (www.uk-legislation.hmso.gov.uk).
- 3. IPPC: A Practical Guide (for England and Wales) (or equivalents in Scotland and Northern Ireland) (www.environment.detr.gov.uk).
- 4. IPPC Part A(1) Installations: Guide for Applicants EA publication.
- 5. Assessment methodologies.
  - E1 BPEO Assessment Methodology for IPC
  - IPPC Environmental Assessments for BAT (in preparation as H1).
- 6. Waste minimisation references:
  - Environment Agency Website. Waste minimisation information accessible via: www.environment-agency.gov.uk/epns/waste;
  - ETBPP, Cost-Effective Membrane Technologies for Minimising Wastes and Effluents, GG54;
  - ETBPP GG157, 1999
  - ETBPP GC150 Turning Waste into Profit: A Good Practice Case Study at Joseph Heler
  - Waste Minimisation an environmental good practice guide for industry (help industry to minimise waste and achieve national environmental goals). Available free to companies who intend to undertake a waste reduction programme. Tel 0345 33 77 00;
  - Profiting from Pollution Prevention 3Es methodology (emissions, efficiency, economics). Video and A4 Guide aimed at process industries. Available from Environment Agency, North-East region, Tel 0113 244 0191 (ask for regional PIR);
  - Waste Minimisation Interactive Tools (WIMIT). Produced in association with the ETBPP and the BOC Foundation. (A software tool designed for small and medium businesses.). Available free from The Environmental Helpline, Tel 0800 585794;
  - Environmental Technology Best Practice Programme ETBPP- a Joint DTI/DETR programme with over 200 separate Case Studies, Good Practice Guides, leaflets, flyers, Software tools and Videos covering 12 industry sectors, packaging, solvents and the generic areas of waste minimisation and cleaner technology. The ETBPP is accessible via a FREE and confidential **helpline Tel. 0800 585794** or via the website: www.etsu.com/etbpp/
  - Waste Management Information Bureau. The UK's national referral centre for help on the full range of waste management issues; the bureau produces a database called Waste Info, which is available for Online searching and on CD-ROM. Short enquiries are free: enquiry line 01235 463162;
  - Institution of Chemical Engineers Training Package E07 Waste Minimisation. Basic course. Contains Guide, Video, Slides, OHPs etc. Available from Tel 01788 578214.
- 7. Water efficiency references:
  - ETBPP, Cost Effective Water Saving Devices and Practices GG67;
  - ETBPP Tracking Water Use to Cut Costs GG152;
  - ETBPP, Simple measures restrict water costs, GC22;
  - ETBPP, Saving money through waste minimisation: Reducing water use, GG26;
  - ETBPP Helpline 0800 585794.
- 8. Main Activities references:
  - Fellows, P.J, Food Processing Technology Principles and Practice, 2<sup>nd</sup> edition, 2000, Woodhead Publishing, ISBN 1 85573 533 4;
  - Food Processing November 2000
  - ETBPP, Reducing the Cost of Cleaning in the Food and Drink Industry, GG 154.
- 9. Environment Agency (1998) Optimum use of water for industry and agriculture dependent on direct abstraction: Best practice manual. R&D technical report W157, WRc Dissemination Centre, Swindon (tel 01793 865012)
- 10. Air Abatement references:
  - A3 Pollution abatement technology for particulate and trace gas removal 1994 £5.00. 0-11-752983-4 (EA website summary).
- 11. Water Treatment references:
  - A4 Effluent Treatment Techniques, TGN A4, Environment Agency, ISBN 0-11-310127-9 (EA website summary);
  - Wehrle Environmental, Spinners Court, 53 West End, Witney, Oxfordshire, OX8 6NJ;

#### **REFERENCES**

- Pollution Control in the Treatment and Processing of Animal and Vegetable Matter, DoE/HMIP/RR/93/058;
- ETBPP, Effluent costs eliminated by water treatment, GC24;
- ETBPP, Cost Effective Separation Technologies for Minimising Wastes and Effluents, GG37;
- ETBPP, Cost Effective Membrane Technologies for Minimising Wastes and Effluents, GG54;
- ETBPP, Membrane Technology Turns Effluent into Cost Savings NC259;
- 12. Environment Agency, Pollution Prevention Guidance note Above ground oil storage tanks, PPG 2 gives information on tanks and bunding which have general relevance beyond just oil. (EA website)
- Mason, P. A. Amies, H. J, Sangarapillai, G. Rose, Construction of bunds for oil storage tanks, Construction Industry Research and Information Association (CIRIA), Report 163, 1997, CIRIA, 6 Storey's Gate, Westminster, London, SW1P 3AU. Abbreviated versions are also available for masonry and concrete bunds (www.ciria.org.uk online purchase).
- 14. Dispersion Methodology Guide D1 (EA Website)
- 15. Energy References:
  - IPPC Energy Efficiency Guidance Note (the consultation version, available on the website should be used until the final version is published)
  - Energy Efficiency Best Practice Programme (EEBPP) publications (Helpline 0800 585794);
  - IPC S2 1.01 Combustion processes: large boilers and furnaces 50MW(th) and over November 1995, £9.95 ISBN 0-11-753206-1;
  - IPC S3 1.01 Combustion Processes supplements IPR 1/2, IPC S2 1.01, S2 1.03 to S2 1.05;
  - IPC S2 5.01 Waste incineration October 1996, £30.00 ISBN 0-11-310117-1.
- 16. BS 5908: Code of Practice for Fire Precautions in the Chemical and Allied Industries.
- 17. Environment Agency, Pollution Prevention Guidance Note Pollution prevention measures for the control of spillages and fire fighting run-off, PPG 18 gives information on sizing firewater containment systems (EA website)
- 18. Investigation of the criteria for, and guidance on, the landspreading of industrial wastes final report to the DETR, the Environment Agency and MAFF. May 1998.
- 19. Agency guidance on the exemption 7 activity, proposed.
- 20. COMAH guides:
  - A Guide to the Control of Major Accident Hazards Regulations 1999, Health and Safety Executive (HSE) Books L111, 1999, ISBN 0 07176 1604 5;
  - Preparing Safety Reports: Control of Major Accident Hazards Regulations 1999, HSE Books HS(G)190, 1999;
  - Emergency Planning for Major Accidents: Control of Major Accident Hazards Regulations 1999, HSE Books HS(G)191, 1999;
  - Guidance on the Environmental Risk Assessment Aspects of COMAH Safety Reports, Environment Agency, 1999; (EA website);
  - Guidance on the Interpretation of Major Accidents to the Environment for the Purposes of the COMAH Regulations, DETR, 1999, ISBN 753501 X, available from the Stationery Office.
- 21. Assessment and Control of Environmental Noise and Vibration from Industrial Activities (Joint agencies guidance in preparation).
- 22. Monitoring Guidance (EA website):
  - M1 Sampling facility requirements for the monitoring of particulates in gaseous releases to atmosphere March 1993, £5.00 ISBN 0-11-752777-7;
  - M2 Monitoring emissions of pollutants at source January 1994, £10.00 ISBN 0-11-752922-2;
  - M3 Standards for IPC Monitoring Part 1: Standards, organisations and the measurement infrastructure August 1995, £11.00 ISBN 0-11-753133-2;
  - M4 Standards for IPC Monitoring Part 2 : Standards in support of IPC Monitoring Revised 1998;
  - MCERTS approved equipment link via <a href="http://www.environment-agency.gov.uk">http://www.environment-agency.gov.uk</a> "Guidance for Business and Industry" page;
  - Direct Toxicity Assessment for Effluent Control: Technical Guidance (2000), UKWIR 00/TX/02/07.
- 23. The Categorisation of Volatile Organic Compounds. DOE Research Report No DOE/HMIP/RR/95/009 (EA website).
- 24. Odour Assessment and Control Guidance for Regulators and Industry. (Joint agencies guidance in preparation).
- 25. "Policy and Practice for the Protection of Groundwater" (PPPG) (EA website).
- 26. Working at Construction and Demolition-sites (PPG 6) (EA website).
- 27. IPPC Preparation of a Site Report in a Permit Application (EA website)

## DEFINITIONS

| BAT<br>BAT Criteria<br>Biocides<br>BOD<br>CHP<br>COD<br>DAF<br>EMS<br>ETP<br>ITEQ<br>NIEHS<br>SECp<br>SEPA<br>SS<br>STW<br>TOC | Best Available Techniques<br>The criteria to be taken into account when assessing BAT, given in Schedule 2 of the PPC Regulations<br>Pesticides, Herbicides and Fungicides<br>Biochemical Oxygen Demand<br>Combined heat and power plant<br>Chemical Oxygen Demand<br>Dissolved air flotation<br>Environmental Management System<br>Effluent treatment plant<br>International Toxicity Equivalents<br>Northern Ireland Environment and Heritage Service<br>Specific Energy Consumption<br>Scottish Environment Protection Agency<br>Suspended solids<br>Sewage treatment works<br>Total Organic Carbon<br>Tetal Ourserved of Onlide |
|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TSS<br>VOC                                                                                                                     | Total Suspended Solids<br>Volatile organic compounds and includes all organic compounds released to air in the gas phase.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

## APPENDIX 1 - SOME COMMON MONITORING AND SAMPLING METHODS

Table A1.1: Measurement methods for common substances to water

| Determinand                                                    | Method                                                                  | Detection<br>limit<br>Uncertainty | Valid for<br>range<br>mg/l | Standard                                                                                                                                 |
|----------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Suspended solids                                               | Filtration through<br>glass fibre filters                               | 1 mg/l<br>20%                     | 10-40                      | ISO 11929:1997<br>EN872 Determination of suspended solids                                                                                |
| COD                                                            | Oxidation with dichromate                                               | 12 mg/l<br>20%                    | 50-400                     | ISO 6060: 1989<br>Water Quality- Determination of chemical<br>oxygen demand                                                              |
| BOD₅                                                           | Seeding with<br>micro-organisms<br>and measurement<br>of oxygen content | 2 mg/l<br>20%                     | 5-30                       | ISO 5815: 1989 Water Quality Determination<br>of biological oxygen demand after 5 days,<br>dilution and seeding method                   |
| AOX                                                            | Adsorption on<br>activated carbon<br>and combustion                     | <br>20%                           | 0.4 – 1.0                  | ISO 9562: 1998<br>EN1485 – Determination of adsorbable<br>organically bound halogens.                                                    |
| Tot P                                                          |                                                                         |                                   |                            | BS 6068: Section 2.28 1997 Determination of phosphorus –ammonium molybdate spectrometric method                                          |
| Tot N                                                          |                                                                         |                                   |                            | BS 6068: Section 2.62 1998 – Determination<br>of nitrogen Part 1 Method using oxidative<br>digestion with peroxydisulphate               |
| рН                                                             |                                                                         |                                   |                            | SCA The measurement of electric conductivity<br>and the determination of pH ISBN<br>0117514284                                           |
| Turbidity                                                      |                                                                         |                                   |                            | SCA Colour and turbidity of waters<br>1981 ISBN 0117519553                                                                               |
| Flow rate                                                      | Mechanical<br>ultrasonic or<br>electromagnetic<br>gauges                |                                   |                            | SCA Estimation of Flow and Load<br>ISBN 011752364X                                                                                       |
| Temperature                                                    |                                                                         |                                   |                            |                                                                                                                                          |
| TOC                                                            |                                                                         |                                   |                            | SCA The Instrumental Determination of Total<br>Organic Carbon and Related Determinants<br>1995<br>ISNB 0117529796                        |
| Fatty<br>Acids                                                 |                                                                         |                                   |                            | Determination of Volatile Fatty Acids in<br>Sewage Sludge 1979 ISBN 0117514624                                                           |
| Metals                                                         |                                                                         |                                   |                            | BS 6068: Section 2.60 1998 – Determination<br>of 33 elements by inductively coupled plasma<br>atomic emission spectroscopy               |
| Chlorine                                                       |                                                                         |                                   |                            | BS6068: Section 2.27 1990 – Method for the determination of total chlorine: iodometric titration method                                  |
| Chloroform<br>Bromoform                                        |                                                                         |                                   |                            | BS 6068: Section 2.58 Determination of highly<br>volatile halogenated hydrocarbons – Gas<br>chromatographic methods                      |
| Dispersants<br>Surfactants<br>Anionic<br>Cationic<br>Non-ionic |                                                                         |                                   |                            | SCA Analysis of Surfactants in Waters,<br>Wastewaters and Sludges<br>ISBN 01176058                                                       |
| Pentachloro-<br>Phenol                                         |                                                                         |                                   |                            | BS5666 Part 6 1983 – Wood preservative and<br>treated timber quantitative analysis of wood<br>preservatives containing pentachlorophenol |
| Formaldehyde                                                   |                                                                         |                                   |                            | SCA The determination of formaldehyde, other volatile aldehydes and alcohols in water                                                    |
| Phosphates<br>and<br>Nitrates                                  |                                                                         |                                   |                            | BS 6068: Section 2.53 1997 Determination of dissolved ions by liquid chromatography                                                      |
| Sulphites and sulphates                                        |                                                                         |                                   |                            | BS 6068: Section 2.53 1997 Determination of dissolved ions by liquid chromatography                                                      |
| Ammonia                                                        |                                                                         |                                   |                            | BS 6068: Section 2.11 1987 – Method for the determination of ammonium: automated spectrometric method                                    |
| Grease and oils                                                | IR absorption                                                           | 0.06 mg/kg                        |                            | SCA The determination of hydrocarbon oils in waters by solvent extraction IR absorption and gravimetry ISBN 011751 7283                  |

#### APPENDIX 1 - MONITORING AND SAMPLING METHODS

Table A1.2: Measurement methods for other substances to water

| Substance                                                  | Typical QL in<br>clear water <sup>Note 1</sup><br>mg/l | Typical QL in<br>dirty water <sup>Note 2</sup><br>mg/I | Technique<br>Note 3 | Likely<br>Source |
|------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|---------------------|------------------|
| Mercury                                                    | 0.1                                                    | 0.1                                                    | CVAF                | 7                |
| Cadmium                                                    | 0.6                                                    | 0.6                                                    | ICPMS               | 7                |
| HCH (inc Lindane)                                          | 0.05                                                   | 0.2                                                    | GC-MS               | 6                |
| DDT                                                        | 0.05                                                   | 0.2                                                    | GC-MS               | 6                |
| Pentachlorophenol                                          | 1.0                                                    | 1.0                                                    | GC-MS               | 1                |
| Hexachloro-benzene                                         | 0.05                                                   | 0.2                                                    | GC-MS               | 6                |
| Hexachloro-butadiene                                       | 0.05                                                   | 0.2                                                    | GC-MS               | 6                |
| Aldrin                                                     | 0.05                                                   | 0.2                                                    | GC-MS               | 6                |
| Dieldrin                                                   | 0.05                                                   | 0.2                                                    | GC-MS               | 6                |
| Endrin                                                     | 0.05                                                   | 0.4                                                    | GC-MS               | 6                |
| PCBs                                                       | 0.05                                                   | 0.2                                                    | GC-MS               | 6                |
| Dichlorvos                                                 | 0.05                                                   | 0.2                                                    | GC-MS               | 6                |
| 1,2 Dichloroethane                                         | 5.0                                                    | 5.0                                                    | GC-ECD              | 6                |
| Trichlorobenzene                                           | 0.05                                                   | 0.2                                                    | GC-MS               | 6                |
| Atrazine                                                   | 0.10                                                   | 0.4                                                    | GC-MS               | 6                |
| Simazine                                                   | 0.10                                                   | 0.4                                                    | GC-MS               | 6                |
| Tributyl tin and<br>Triphenyltin<br>(as total organic tin) | 0.04                                                   | 0.04                                                   | GFAAS<br>Note 5     | 6                |
| Trifluralin                                                | 0.05                                                   | 0.2                                                    | GC-MS               | 6                |
| Fenitrothion                                               | 0.05                                                   | 0.2                                                    | GC-MS               | 6                |
| Azinphos-methyl                                            | N/a                                                    | n/a                                                    | GC-MS               | 6                |
| Malathion                                                  | 0.05                                                   | 0.2                                                    | GC-MS               | 6                |
| Endosulphan                                                | 0.05                                                   | 0.2                                                    | GC-MS               | 6                |

#### Notes:

- 1. River water or treated effluent (< 100 mg/l COD)
- 2. Abbreviations:

| GC-ECD | gas chro | omatography | - electron | capture | detection |
|--------|----------|-------------|------------|---------|-----------|
|--------|----------|-------------|------------|---------|-----------|

ICPMS inductively coupled plasma mass spectrometry

- CVAF cold vapour atomic fluorescence
- GC-MS gas chromatography mass spectrometry
- GFAAS graphite furnace atomic absorption spectrophotometry
- 3. The "quantifiable level" (QL) represents, for organic substances, the point at which there should be a 95% confidence in the levels of accuracy and precision obtained and with an overall maximum error level of 50% (precision and bias). At levels of around one tenth of these, at the "ultimate limit of detection", it is normally possible to detect the presence or absence of determinands at the 95% confidence level, but not to put a numerical value on it. While the "ultimate limit of detection" may be applicable for detecting the likely presence or absence of prescribed substances, regulatory limits are not normally set at levels below the "quantifiable level".

For metals the above applies in principle but the figures given are based on the WRC NS30 (previously TL66) method.

Levels between the quantifiable levels and the ultimate limit of detection need to be treated with caution but can be useful when assessing the likely extent of the presence of prescribed substances.

4 Most laboratories have or are developing methodologies for quantifying tributyl and triphenyl tin expressible as the cation or the compound. A similar level of detection would be expected.

#### APPENDIX 1 - MONITORING AND SAMPLING METHODS

Table A1.3: Measurement methods for air emissions

| Determinand          | Method                                                                  | Av'ging time<br>Detection limit<br>Uncertainty | Compliance<br>criterion                                           | Standard                                                                                                                                                           |
|----------------------|-------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Formaldehyde         | Impingement In 2,4<br>dinitrophenyl-<br>Hydrazine HPLC                  | 1 hour<br>1 mg/m <sup>3</sup><br>30%           | Average of 3<br>consecutive<br>samples below                      | NIOSH                                                                                                                                                              |
| Ammonia              | Ion chromatography                                                      | 1 hour<br>0.5mg/m <sup>3</sup><br>25%          | specified limit                                                   | US EPA Method 26                                                                                                                                                   |
| VOCs<br>Speciated    | Adsorption<br>Thermal<br>Desorption<br>GCMS                             | 1 hour<br>0.1 mg/m <sup>3</sup><br>30%         |                                                                   | BS EN 1076:Workplace<br>atmospheres. Pumped sorbent<br>tubes for the determination of<br>gases and vapours.<br>Requirements and test methods.                      |
| Chloroform           | Absorption on<br>activated carbon<br>solvent extraction.<br>GC analysis | 1 hour<br>1 mg/m <sup>3</sup><br>20%           |                                                                   | MDHS 28 Chlorinated<br>hydrocarbon solvent vapours in<br>air (modified)                                                                                            |
| Oxides of<br>Sulphur | UV fluoresence<br>automatic analyser                                    | 1 hour<br>1 ppm<br>10%                         | 95% of hourly<br>averages over a<br>year below<br>specified limit | ISO 7935 (BS6069 Section 4.4)<br>Stationary source emissions-<br>determination of mass<br>concentrations of sulphur dioxide<br>CEN Standard in preparation         |
|                      | Wet sampling train<br>Ion chromatography                                | 1 hour<br>1 mg/m <sup>3</sup><br>25%           | Average of 3<br>consecutive<br>samples below<br>specified limit   | ISO 7934 (BS6069 Section 4.1)<br>Method for the determination of<br>the mass concentration of<br>sulphur dioxide-hydrogen<br>peroxide/barium perchlorate<br>method |

Measurement uncertainty is defined as total expanded uncertainty at 95% confidence interval calculated in accordance with the Guide to the Expression of Uncertainty in Measurement, ISBN 92-67-10188-9, 1<sup>st</sup> Ed., Geneva, Switzerland, ISO 1993.

See also Monitoring Guidance Ref 22.

# APPENDIX 2 - EQUIVALENT LEGISLATION IN SCOTLAND & NORTHERN IRELAND

The legislation referred to in the text is that for England and Wales. The following are the equivalents for Scotland and Northern Ireland.

| England and Wales                                                                                                                                                                                   | Scotland                                                                                                                     | Northern Ireland                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| PPC Regulations (England and Wales) SI 2000 1973                                                                                                                                                    | PPC (Scotland) Regulations 2000; SI 200/323                                                                                  |                                                                                                                                                   |
| The Water Resources Act 1991                                                                                                                                                                        | COPA 1974 (S30A-30E equiv<br>to Part III WRA91) Natural<br>Heritage (Scotland) Act<br>1991(Part II equiv to Part I<br>WRA91) | The Water (NI) Order 1999                                                                                                                         |
| SI 1989 No 317: Clean Air, The<br>Air Quality Standards<br>Regulations 1989                                                                                                                         | SI 1989/317: Clean Air, The Air<br>Quality Standards Regulations<br>1989                                                     | The Air Quality Standards<br>Regulations (Northern Ireland)<br>1990. Statutory Rules of<br>Northern Ireland 1990 No 145                           |
| SI 1997 No 3043:<br>Environmental Protection, The<br>Air Quality Regulations 1997                                                                                                                   | SSI 2000/97 The Air Quality (Scotland) Regs                                                                                  | No NI equivalent                                                                                                                                  |
| SI 1989 No 2286 and 1998 No<br>389 the Surface Water<br>(Dangerous Substances<br>Classification) Regulations.<br>(Values for List 2 substances<br>are contained in SI 1997/2560<br>and SI 1998/389) | SI 1990/126 Surface Water<br>(Dangerous Substances)<br>(Classification) (Scotland) Regs                                      | Surface Waters (Dangerous<br>Substances) (Classification)<br>Regulations 1998. Statutory<br>Rules of Northern Ireland 1998<br>No 397 SI1991/1597: |
| SI 1991/1597: Bathing Waters<br>(Classification) Regs                                                                                                                                               | SI 1991/1609 Bathing Waters<br>(Classification) (Scotland) Regs                                                              | The Quality of Bathing Water<br>Regulations (NI) 1993                                                                                             |
| SI 1992/1331 and Direction<br>1997 Surface Waters (Fishlife)<br>(Classification) Regs                                                                                                               | SI 1997/2471 Surface Waters<br>(Fishlife) (Classification) Regs                                                              | The Surface Water (Fishlife)<br>(Classification) Regulations<br>(NI) 1997                                                                         |
| SI1997/1332 Surface Waters<br>(Shellfish) (Classification) Regs                                                                                                                                     | SI 1997/2470 Surface Waters<br>(Shellfish) (Classification) Regs                                                             | The Surface Water (Shellfish)<br>(Classification) Regulations<br>(NI) 1997                                                                        |
| SI1994/2716 Conservation<br>(Natural Habitats etc)<br>Regulations 1994                                                                                                                              | SI 1994/2716 Conservation<br>(Natural Habitats etc) Regs                                                                     | Conservation (Natural Habitats<br>etc) Regulations (Northern<br>Ireland) 1995                                                                     |
| Control of Major Accident<br>Hazards Regulations 1999<br>(COMAH)                                                                                                                                    | SI 1999/743 Control of Major<br>Accident Hazards Regs                                                                        | Control of Major Accident<br>Hazard Regulations (Northern<br>Ireland) 2000 for NI                                                                 |